Xenova HF Staff commited on
Commit
9874949
·
verified ·
1 Parent(s): 9c0cfbd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -0
README.md CHANGED
@@ -5,4 +5,34 @@ base_model: facebook/dinov2-with-registers-large-imagenet1k-1-layer
5
 
6
  https://huggingface.co/facebook/dinov2-with-registers-large-imagenet1k-1-layer with ONNX weights to be compatible with Transformers.js.
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
 
5
 
6
  https://huggingface.co/facebook/dinov2-with-registers-large-imagenet1k-1-layer with ONNX weights to be compatible with Transformers.js.
7
 
8
+ ## Usage (Transformers.js)
9
+
10
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
11
+ ```bash
12
+ npm i @huggingface/transformers
13
+ ```
14
+
15
+ **Example:** Image classification w/ `onnx-community/dinov2-with-registers-large-imagenet1k-1-layer`.
16
+
17
+ ```javascript
18
+ import { pipeline } from '@huggingface/transformers';
19
+
20
+ // Create image classification pipeline
21
+ const classifier = await pipeline('image-classification', 'onnx-community/dinov2-with-registers-large-imagenet1k-1-layer');
22
+
23
+ // Classify an image
24
+ const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
25
+ const output = await classifier(url);
26
+ console.log(output);
27
+ // [
28
+ // { label: 'tabby, tabby cat', score: 0.5210835337638855 },
29
+ // { label: 'Egyptian cat', score: 0.313551127910614 },
30
+ // { label: 'tiger cat', score: 0.14324277639389038 },
31
+ // { label: 'lynx, catamount', score: 0.005053747445344925 },
32
+ // { label: 'remote control, remote', score: 0.001643550000153482 }
33
+ // ]
34
+ ```
35
+
36
+ ---
37
+
38
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).