Xenova's picture
Xenova HF staff
Update README.md
c70d1dd verified
|
raw
history blame
1.74 kB
metadata
library_name: transformers.js
license: apache-2.0
pipeline_tag: depth-estimation

https://huggingface.co/depth-anything/Depth-Anything-V2-Small with ONNX weights to be compatible with Transformers.js.

Usage (Transformers.js)

If you haven't already, you can install the Transformers.js JavaScript library from NPM using:

npm i @xenova/transformers

Example: Depth estimation w/ onnx-community/depth-anything-v2-small.

import { pipeline } from '@xenova/transformers';

// Create depth estimation pipeline
const depth_estimator = await pipeline('depth-estimation', 'onnx-community/depth-anything-v2-small');

// Predict depth of an image
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
const { predicted_depth, depth } = await depth_estimator(url);
depth.save('depth.png');
// {
//   predicted_depth: Tensor {
//     dims: [ 518, 686 ],
//     type: 'float32',
//     data: Float32Array(147456) [ ... ],
//     size: 355348
//   },
//   depth: RawImage {
//     data: Uint8Array(307200) [ ... ],
//     width: 640,
//     height: 480,
//     channels: 1
//   }
// }

image/png


Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using 🤗 Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx).