metadata
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:404290
- loss:OnlineContrastiveLoss
base_model: sentence-transformers/stsb-distilbert-base
widget:
- source_sentence: Why Modi is putting a ban on 500 and 1000 notes?
sentences:
- Why making multiple fake accounts on Quora is illegal?
- >-
What are the advantages of the decision taken by the Government of India
to scrap out 500 and 1000 rupees notes?
- Why should I go for internships?
- source_sentence: Where can I buy cheap t-shirts?
sentences:
- Where can I buy cheap wholesale t-shirts?
- How can I make money from a blog?
- What are the best places to shop in Charleston, SC?
- source_sentence: What are the most important mobile applications?
sentences:
- How can I tell if my wife's vagina had a bigger penis inside?
- What is the most important apps in your phone?
- >-
What do you think Ned Stark would have done or said to Jon Snow if he
was able to join the Night’s Watch or escaped his beheading?
- source_sentence: What is the whole process for making Android games with high graphics?
sentences:
- What lf I don't accept Jesus as God?
- >-
I have to masturbate3 times to feel an orgasm sometimes only2 times what
is wrong with me I went to the doctor and they do not believe meWhat's
wrong?
- What does a healthy diet consist of?
- source_sentence: Why do so many religious people believe in healing miracles?
sentences:
- Is Warframe better than Destiny?
- What do you like about China?
- Is believing in God a bad thing?
datasets:
- sentence-transformers/quora-duplicates
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
- average_precision
- f1
- precision
- recall
- threshold
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: quora duplicates
type: quora-duplicates
metrics:
- type: cosine_accuracy
value: 0.877
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7857047319412231
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8516284680337757
name: Cosine F1
- type: cosine_f1_threshold
value: 0.774639368057251
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8209302325581396
name: Cosine Precision
- type: cosine_recall
value: 0.8847117794486216
name: Cosine Recall
- type: cosine_ap
value: 0.8988328505183655
name: Cosine Ap
- type: cosine_mcc
value: 0.7483655051498526
name: Cosine Mcc
- task:
type: paraphrase-mining
name: Paraphrase Mining
dataset:
name: quora duplicates dev
type: quora-duplicates-dev
metrics:
- type: average_precision
value: 0.5483042026376685
name: Average Precision
- type: f1
value: 0.5606415792720543
name: F1
- type: precision
value: 0.5539301735907939
name: Precision
- type: recall
value: 0.5675176100314733
name: Recall
- type: threshold
value: 0.8631762564182281
name: Threshold
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9308
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.969
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9778
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9854
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9308
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4145333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.26696000000000003
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.14144
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8008592901379665
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9314231047351341
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9558165998609235
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9743579383296442
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9511384841680516
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9511976190476192
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.939071878001028
name: Cosine Map@100
SentenceTransformer based on sentence-transformers/stsb-distilbert-base
This is a sentence-transformers model finetuned from sentence-transformers/stsb-distilbert-base on the quora-duplicates dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/stsb-distilbert-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("omega5505/stsb-distilbert-base-ocl")
# Run inference
sentences = [
'Why do so many religious people believe in healing miracles?',
'Is believing in God a bad thing?',
'What do you like about China?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
quora-duplicates
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.877 |
cosine_accuracy_threshold | 0.7857 |
cosine_f1 | 0.8516 |
cosine_f1_threshold | 0.7746 |
cosine_precision | 0.8209 |
cosine_recall | 0.8847 |
cosine_ap | 0.8988 |
cosine_mcc | 0.7484 |
Paraphrase Mining
- Dataset:
quora-duplicates-dev
- Evaluated with
ParaphraseMiningEvaluator
Metric | Value |
---|---|
average_precision | 0.5483 |
f1 | 0.5606 |
precision | 0.5539 |
recall | 0.5675 |
threshold | 0.8632 |
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9308 |
cosine_accuracy@3 | 0.969 |
cosine_accuracy@5 | 0.9778 |
cosine_accuracy@10 | 0.9854 |
cosine_precision@1 | 0.9308 |
cosine_precision@3 | 0.4145 |
cosine_precision@5 | 0.267 |
cosine_precision@10 | 0.1414 |
cosine_recall@1 | 0.8009 |
cosine_recall@3 | 0.9314 |
cosine_recall@5 | 0.9558 |
cosine_recall@10 | 0.9744 |
cosine_ndcg@10 | 0.9511 |
cosine_mrr@10 | 0.9512 |
cosine_map@100 | 0.9391 |
Training Details
Training Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 404,290 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 15.73 tokens
- max: 65 tokens
- min: 6 tokens
- mean: 15.93 tokens
- max: 85 tokens
- 0: ~61.60%
- 1: ~38.40%
- Samples:
sentence1 sentence2 label How can Trump supporters claim he didn't mock a disabled reporter when there is live footage of him mocking a disabled reporter?
Why don't people actually watch the Trump video of him allegedly mocking a disabled reporter?
0
Where can I get the best digital marketing course (online & offline) in India?
Which is the best digital marketing institute for professionals in India?
1
What best two liner shayri?
What does "senile dementia, uncomplicated" mean in medical terms?
0
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 404,290 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 16.14 tokens
- max: 70 tokens
- min: 6 tokens
- mean: 15.92 tokens
- max: 74 tokens
- 0: ~60.10%
- 1: ~39.90%
- Samples:
sentence1 sentence2 label What are some must subscribe RSS feeds?
What are RSS feeds?
0
How close are Madonna and Hillary Clinton?
Why do people say Hillary Clinton is a crook?
0
Can you share best day of your life?
What is the Best Day of your life till date?
1
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | quora-duplicates_cosine_ap | quora-duplicates-dev_average_precision | cosine_ndcg@10 |
---|---|---|---|---|---|---|
0 | 0 | - | - | 0.7458 | 0.4200 | 0.9390 |
0.0640 | 100 | 2.5263 | - | - | - | - |
0.1280 | 200 | 2.1489 | - | - | - | - |
0.1599 | 250 | - | 1.8621 | 0.8433 | 0.3907 | 0.9329 |
0.1919 | 300 | 2.0353 | - | - | - | - |
0.2559 | 400 | 1.7831 | - | - | - | - |
0.3199 | 500 | 1.8887 | 1.7744 | 0.8662 | 0.4924 | 0.9379 |
0.3839 | 600 | 1.7814 | - | - | - | - |
0.4479 | 700 | 1.7775 | - | - | - | - |
0.4798 | 750 | - | 1.6468 | 0.8766 | 0.4945 | 0.9399 |
0.5118 | 800 | 1.6835 | - | - | - | - |
0.5758 | 900 | 1.6974 | - | - | - | - |
0.6398 | 1000 | 1.5704 | 1.4925 | 0.8895 | 0.5283 | 0.9460 |
0.7038 | 1100 | 1.6771 | - | - | - | - |
0.7678 | 1200 | 1.619 | - | - | - | - |
0.7997 | 1250 | - | 1.4311 | 0.8982 | 0.5252 | 0.9466 |
0.8317 | 1300 | 1.6119 | - | - | - | - |
0.8957 | 1400 | 1.6043 | - | - | - | - |
0.9597 | 1500 | 1.6848 | 1.4070 | 0.8988 | 0.5483 | 0.9511 |
Framework Versions
- Python: 3.9.18
- Sentence Transformers: 3.4.1
- Transformers: 4.44.2
- PyTorch: 2.2.1+cu121
- Accelerate: 1.3.0
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}