update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -51,7 +51,7 @@ More information needed
|
|
51 |
### Training hyperparameters
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
-
- learning_rate:
|
55 |
- train_batch_size: 8
|
56 |
- eval_batch_size: 8
|
57 |
- seed: 42
|
@@ -60,15 +60,42 @@ The following hyperparameters were used during training:
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
-
- num_epochs:
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 1.
|
70 |
-
|
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.8328267477203647
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.4990
|
35 |
+
- Accuracy: 0.8328
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
51 |
### Training hyperparameters
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
- train_batch_size: 8
|
56 |
- eval_batch_size: 8
|
57 |
- seed: 42
|
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 30
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 1.3594 | 0.99 | 92 | 1.3630 | 0.5015 |
|
70 |
+
| 1.3214 | 2.0 | 185 | 1.3252 | 0.5714 |
|
71 |
+
| 1.2633 | 2.99 | 277 | 1.2851 | 0.6140 |
|
72 |
+
| 1.2693 | 4.0 | 370 | 1.2385 | 0.6626 |
|
73 |
+
| 1.1902 | 4.99 | 462 | 1.1837 | 0.6991 |
|
74 |
+
| 1.1421 | 6.0 | 555 | 1.1255 | 0.7568 |
|
75 |
+
| 1.1979 | 6.99 | 647 | 1.0094 | 0.8024 |
|
76 |
+
| 0.9431 | 8.0 | 740 | 0.9544 | 0.8237 |
|
77 |
+
| 0.9627 | 8.99 | 832 | 0.8864 | 0.8267 |
|
78 |
+
| 0.8556 | 10.0 | 925 | 0.8365 | 0.8328 |
|
79 |
+
| 0.7792 | 10.99 | 1017 | 0.7762 | 0.8359 |
|
80 |
+
| 0.7941 | 12.0 | 1110 | 0.7467 | 0.8359 |
|
81 |
+
| 0.8361 | 12.99 | 1202 | 0.7345 | 0.8237 |
|
82 |
+
| 0.7757 | 14.0 | 1295 | 0.7228 | 0.8146 |
|
83 |
+
| 0.6977 | 14.99 | 1387 | 0.6923 | 0.8267 |
|
84 |
+
| 0.6874 | 16.0 | 1480 | 0.6540 | 0.8146 |
|
85 |
+
| 0.6887 | 16.99 | 1572 | 0.6276 | 0.8298 |
|
86 |
+
| 0.7204 | 18.0 | 1665 | 0.5989 | 0.8267 |
|
87 |
+
| 0.8334 | 18.99 | 1757 | 0.6027 | 0.8237 |
|
88 |
+
| 0.7654 | 20.0 | 1850 | 0.5699 | 0.8511 |
|
89 |
+
| 0.7628 | 20.99 | 1942 | 0.5465 | 0.8389 |
|
90 |
+
| 0.7874 | 22.0 | 2035 | 0.5621 | 0.8298 |
|
91 |
+
| 0.8149 | 22.99 | 2127 | 0.5474 | 0.8298 |
|
92 |
+
| 0.7565 | 24.0 | 2220 | 0.5388 | 0.8480 |
|
93 |
+
| 0.7241 | 24.99 | 2312 | 0.5351 | 0.8267 |
|
94 |
+
| 0.7894 | 26.0 | 2405 | 0.5327 | 0.8389 |
|
95 |
+
| 0.7664 | 26.99 | 2497 | 0.5065 | 0.8450 |
|
96 |
+
| 0.6655 | 28.0 | 2590 | 0.5309 | 0.8359 |
|
97 |
+
| 0.607 | 28.99 | 2682 | 0.5061 | 0.8541 |
|
98 |
+
| 0.6462 | 29.84 | 2760 | 0.4990 | 0.8328 |
|
99 |
|
100 |
|
101 |
### Framework versions
|