omarhkh commited on
Commit
79f7d2b
1 Parent(s): 8e0db32

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -8
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.7355623100303952
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.7411
35
- - Accuracy: 0.7356
36
 
37
  ## Model description
38
 
@@ -51,7 +51,7 @@ More information needed
51
  ### Training hyperparameters
52
 
53
  The following hyperparameters were used during training:
54
- - learning_rate: 0.0005
55
  - train_batch_size: 8
56
  - eval_batch_size: 8
57
  - seed: 42
@@ -60,15 +60,42 @@ The following hyperparameters were used during training:
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
- - num_epochs: 3
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | 1.1032 | 0.99 | 92 | 0.9538 | 0.7508 |
70
- | 0.8227 | 2.0 | 185 | 0.8380 | 0.7660 |
71
- | 0.8362 | 2.98 | 276 | 0.7411 | 0.7356 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
 
74
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.8328267477203647
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.4990
35
+ - Accuracy: 0.8328
36
 
37
  ## Model description
38
 
 
51
  ### Training hyperparameters
52
 
53
  The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
  - train_batch_size: 8
56
  - eval_batch_size: 8
57
  - seed: 42
 
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 30
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.3594 | 0.99 | 92 | 1.3630 | 0.5015 |
70
+ | 1.3214 | 2.0 | 185 | 1.3252 | 0.5714 |
71
+ | 1.2633 | 2.99 | 277 | 1.2851 | 0.6140 |
72
+ | 1.2693 | 4.0 | 370 | 1.2385 | 0.6626 |
73
+ | 1.1902 | 4.99 | 462 | 1.1837 | 0.6991 |
74
+ | 1.1421 | 6.0 | 555 | 1.1255 | 0.7568 |
75
+ | 1.1979 | 6.99 | 647 | 1.0094 | 0.8024 |
76
+ | 0.9431 | 8.0 | 740 | 0.9544 | 0.8237 |
77
+ | 0.9627 | 8.99 | 832 | 0.8864 | 0.8267 |
78
+ | 0.8556 | 10.0 | 925 | 0.8365 | 0.8328 |
79
+ | 0.7792 | 10.99 | 1017 | 0.7762 | 0.8359 |
80
+ | 0.7941 | 12.0 | 1110 | 0.7467 | 0.8359 |
81
+ | 0.8361 | 12.99 | 1202 | 0.7345 | 0.8237 |
82
+ | 0.7757 | 14.0 | 1295 | 0.7228 | 0.8146 |
83
+ | 0.6977 | 14.99 | 1387 | 0.6923 | 0.8267 |
84
+ | 0.6874 | 16.0 | 1480 | 0.6540 | 0.8146 |
85
+ | 0.6887 | 16.99 | 1572 | 0.6276 | 0.8298 |
86
+ | 0.7204 | 18.0 | 1665 | 0.5989 | 0.8267 |
87
+ | 0.8334 | 18.99 | 1757 | 0.6027 | 0.8237 |
88
+ | 0.7654 | 20.0 | 1850 | 0.5699 | 0.8511 |
89
+ | 0.7628 | 20.99 | 1942 | 0.5465 | 0.8389 |
90
+ | 0.7874 | 22.0 | 2035 | 0.5621 | 0.8298 |
91
+ | 0.8149 | 22.99 | 2127 | 0.5474 | 0.8298 |
92
+ | 0.7565 | 24.0 | 2220 | 0.5388 | 0.8480 |
93
+ | 0.7241 | 24.99 | 2312 | 0.5351 | 0.8267 |
94
+ | 0.7894 | 26.0 | 2405 | 0.5327 | 0.8389 |
95
+ | 0.7664 | 26.99 | 2497 | 0.5065 | 0.8450 |
96
+ | 0.6655 | 28.0 | 2590 | 0.5309 | 0.8359 |
97
+ | 0.607 | 28.99 | 2682 | 0.5061 | 0.8541 |
98
+ | 0.6462 | 29.84 | 2760 | 0.4990 | 0.8328 |
99
 
100
 
101
  ### Framework versions