update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: resnet-50-finetuned-omars5
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.8844984802431611
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# resnet-50-finetuned-omars5
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.5844
|
35 |
+
- Accuracy: 0.8845
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 0.0005
|
55 |
+
- train_batch_size: 8
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 4
|
59 |
+
- total_train_batch_size: 32
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 30
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 1.3431 | 0.99 | 92 | 1.2810 | 0.5836 |
|
70 |
+
| 1.0465 | 2.0 | 185 | 0.8740 | 0.8176 |
|
71 |
+
| 0.8755 | 2.99 | 277 | 0.6467 | 0.7994 |
|
72 |
+
| 0.7459 | 4.0 | 370 | 0.5379 | 0.8480 |
|
73 |
+
| 0.7983 | 4.99 | 462 | 0.4385 | 0.8207 |
|
74 |
+
| 0.7692 | 6.0 | 555 | 0.5795 | 0.7842 |
|
75 |
+
| 0.5158 | 6.99 | 647 | 0.4936 | 0.8207 |
|
76 |
+
| 0.625 | 8.0 | 740 | 0.5316 | 0.8298 |
|
77 |
+
| 0.511 | 8.99 | 832 | 0.5202 | 0.8845 |
|
78 |
+
| 0.5025 | 10.0 | 925 | 0.5260 | 0.8784 |
|
79 |
+
| 0.508 | 10.99 | 1017 | 0.5307 | 0.8632 |
|
80 |
+
| 0.4652 | 12.0 | 1110 | 0.6060 | 0.8480 |
|
81 |
+
| 0.4432 | 12.99 | 1202 | 0.5051 | 0.8845 |
|
82 |
+
| 0.3373 | 14.0 | 1295 | 0.8695 | 0.8845 |
|
83 |
+
| 0.3968 | 14.99 | 1387 | 0.6805 | 0.8571 |
|
84 |
+
| 0.4268 | 16.0 | 1480 | 0.6541 | 0.8815 |
|
85 |
+
| 0.3029 | 16.99 | 1572 | 0.5710 | 0.8906 |
|
86 |
+
| 0.3801 | 18.0 | 1665 | 0.6499 | 0.8571 |
|
87 |
+
| 0.3545 | 18.99 | 1757 | 0.6727 | 0.8419 |
|
88 |
+
| 0.3526 | 20.0 | 1850 | 0.6542 | 0.8571 |
|
89 |
+
| 0.3458 | 20.99 | 1942 | 0.6625 | 0.8997 |
|
90 |
+
| 0.3078 | 22.0 | 2035 | 0.6551 | 0.8784 |
|
91 |
+
| 0.3677 | 22.99 | 2127 | 0.5953 | 0.8815 |
|
92 |
+
| 0.3386 | 24.0 | 2220 | 0.6549 | 0.8693 |
|
93 |
+
| 0.213 | 24.99 | 2312 | 0.5846 | 0.8997 |
|
94 |
+
| 0.3778 | 26.0 | 2405 | 0.6746 | 0.8602 |
|
95 |
+
| 0.3079 | 26.99 | 2497 | 0.6594 | 0.8997 |
|
96 |
+
| 0.2943 | 28.0 | 2590 | 0.6246 | 0.8815 |
|
97 |
+
| 0.2782 | 28.99 | 2682 | 0.6550 | 0.8906 |
|
98 |
+
| 0.2931 | 29.84 | 2760 | 0.5844 | 0.8845 |
|
99 |
+
|
100 |
+
|
101 |
+
### Framework versions
|
102 |
+
|
103 |
+
- Transformers 4.30.2
|
104 |
+
- Pytorch 2.0.1+cu117
|
105 |
+
- Datasets 2.13.0
|
106 |
+
- Tokenizers 0.13.3
|