lewtun's picture
lewtun HF staff
Add evaluation results on xtreme dataset
03ec874
|
raw
history blame
2.32 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - xtreme
metrics:
  - f1
model-index:
  - name: xml-roberta-base-finetuned-panx-fr
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: xtreme
          type: xtreme
          args: PAN-X.fr
        metrics:
          - name: F1
            type: f1
            value: 0.8393729984830608
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: xtreme
          type: xtreme
          config: PAN-X.fr
          split: test
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.850120764491739
            verified: true
          - name: Precision
            type: precision
            value: 0.8471802714586121
            verified: true
          - name: Recall
            type: recall
            value: 0.8521433699107784
            verified: true
          - name: F1
            type: f1
            value: 0.8496545729934237
            verified: true
          - name: loss
            type: loss
            value: 0.5212014317512512
            verified: true

xml-roberta-base-finetuned-panx-fr

This model is a fine-tuned version of xlm-roberta-base on the xtreme dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2691
  • F1: 0.8394

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 191 0.3150 0.7993
No log 2.0 382 0.2799 0.8213
No log 3.0 573 0.2691 0.8394

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1