metadata
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xml-roberta-base-finetuned-panx-fr
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.fr
metrics:
- name: F1
type: f1
value: 0.8393729984830608
- task:
type: token-classification
name: Token Classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.fr
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.850120764491739
verified: true
- name: Precision
type: precision
value: 0.8471802714586121
verified: true
- name: Recall
type: recall
value: 0.8521433699107784
verified: true
- name: F1
type: f1
value: 0.8496545729934237
verified: true
- name: loss
type: loss
value: 0.5212014317512512
verified: true
xml-roberta-base-finetuned-panx-fr
This model is a fine-tuned version of xlm-roberta-base on the xtreme dataset. It achieves the following results on the evaluation set:
- Loss: 0.2691
- F1: 0.8394
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 191 | 0.3150 | 0.7993 |
No log | 2.0 | 382 | 0.2799 | 0.8213 |
No log | 3.0 | 573 | 0.2691 | 0.8394 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1