whisper-base-ru / README.md
olafenok's picture
End of training
3566dcb verified
---
language:
- ru
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Base Ru
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: ru
split: test
args: 'config: ru, split: test'
metrics:
- name: Wer
type: wer
value: 26.09407052847514
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Base Ru
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3220
- Wer: 26.0941
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.3017 | 0.9847 | 1000 | 0.3557 | 28.9880 |
| 0.2071 | 1.9695 | 2000 | 0.3259 | 26.9671 |
| 0.1581 | 2.9542 | 3000 | 0.3197 | 26.2272 |
| 0.1152 | 3.9389 | 4000 | 0.3220 | 26.0941 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.0.1+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1