ocm's picture
update model card README.md
897d121
|
raw
history blame
1.8 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
  - f1
model-index:
  - name: distilbert-base-uncased-finetuned-emotion
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.92
          - name: F1
            type: f1
            value: 0.9201111326949308

distilbert-base-uncased-finetuned-emotion

This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2174
  • Accuracy: 0.92
  • F1: 0.9201

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.83 1.0 250 0.3120 0.905 0.9028
0.2469 2.0 500 0.2174 0.92 0.9201

Framework versions

  • Transformers 4.13.0
  • Pytorch 1.12.1+cu113
  • Datasets 1.16.1
  • Tokenizers 0.10.3