fcakyon's picture
update citation
372a4ed
metadata
language: tr
datasets:
  - tquad1
  - tquad2
  - xquad
tags:
  - text2text-generation
  - question-generation
  - answer-extraction
  - question-answering
  - text-generation
pipeline_tag: text2text-generation
widget:
  - text: >-
      generate question: Legendary Entertainment, 2016 yılında bilimkurgu romanı
      Dune'un <hl> film ve TV haklarını <hl> satın aldı. Geliştirme kısa bir
      süre sonra başladı. Villeneuve projeye olan ilgisini dile getirdi ve resmi
      olarak yönetmen olarak imza attı. Roth ve Spaihts ile birlikte çalışarak
      senaryoyu iki bölüme ayırdı ve 1965 romanının 21. yüzyıla güncellenmiş bir
      uyarlamasını ekledi.
    example_title: Question Generation (Movie)
  - text: >-
      generate question: Fatih Sultan Mehmet, Cenevizlilerin önemli üslerinden
      Amasra’yı aldı. 1479’da <hl> bir antlaşma yaparak <hl> Venedik'le  16
      yıllık savaşa son verdi.
    example_title: Question Generation (History)
  - text: >-
      generate question: Cenevizlilerin önemli üslerinden Amasra’yı aldı.
      1479’da bir antlaşma yaparak <hl> Venedik'le <hl> 16 yıllık savaşa sona
      verdi.
    example_title: Question Generation (History 2)
  - text: >-
      extract answers: Cenevizlilerin önemli üslerinden Amasra’yı aldı. <hl>
      1479’da bir antlaşma yaparak Venedik'le 16 yıllık savaşa sona verdi. <hl>
    example_title: Answer Extraction (History)
  - text: >-
      question: Bu model ne ise yarar? context: Çalışmada sunulan yöntemle,
      Türkçe metinlerden otomatik olarak soru ve cevap üretilebilir. Bu proje
      ile paylaşılan kaynak kodu ile Türkçe Soru Üretme / Soru Cevaplama
      konularında yeni akademik çalışmalar yapılabilir. Projenin detaylarına
      paylaşılan Github ve Arxiv linklerinden ulaşılabilir.
    example_title: Answer Extraction (Open Domain)
license: cc-by-4.0

mt5-small for Turkish Question Generation

Automated question generation and question answering using text-to-text transformers by OBSS AI.

from core.api import GenerationAPI
generation_api = GenerationAPI('mt5-small-3task-highlight-combined3')

Citation 📜

@article{akyon2022questgen,
    author = {Akyon, Fatih Cagatay and Cavusoglu, Ali Devrim Ekin and Cengiz, Cemil and Altinuc, Sinan Onur and Temizel, Alptekin},
    doi = {10.3906/elk-1300-0632.3914},
    journal = {Turkish Journal of Electrical Engineering and Computer Sciences},
    title = {{Automated question generation and question answering from Turkish texts}},
    url = {https://journals.tubitak.gov.tr/elektrik/vol30/iss5/17/},
    year = {2022}
}

Overview ✔️

Language model: mt5-small
Language: Turkish
Downstream-task: Extractive QA/QG, Answer Extraction
Training data: TQuADv2-train, TQuADv2-val, XQuAD.tr
Code: https://github.com/obss/turkish-question-generation
Paper: https://journals.tubitak.gov.tr/elektrik/vol30/iss5/17/

Hyperparameters

batch_size = 256
n_epochs = 15
base_LM_model = "mt5-small"
max_source_length = 512
max_target_length = 64
learning_rate = 1.0e-3
task_lisst = ["qa", "qg", "ans_ext"]
qg_format = "highlight"

Performance

Refer to paper.

Usage 🔥

from core.api import GenerationAPI

generation_api = GenerationAPI('mt5-small-3task-highlight-combined3')

context = """
Bu modelin eğitiminde, Türkçe soru cevap verileri kullanılmıştır.
Çalışmada sunulan yöntemle, Türkçe metinlerden otomatik olarak soru ve cevap
üretilebilir. Bu proje ile paylaşılan kaynak kodu ile Türkçe Soru Üretme
/ Soru Cevaplama konularında yeni akademik çalışmalar yapılabilir.
Projenin detaylarına paylaşılan Github ve Arxiv linklerinden ulaşılabilir.
"""

# a) Fully Automated Question Generation
generation_api(task='question-generation', context=context)

# b) Question Answering
question = "Bu model ne işe yarar?"
generation_api(task='question-answering', context=context, question=question)

# b) Answer Extraction
generation_api(task='answer-extraction', context=context)