nzm97's picture
Initial model push after training
778ee8f verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: math_question_grade_detection
    results: []

math_question_grade_detection

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5515
  • Accuracy: 0.8248
  • Precision: 0.8311
  • Recall: 0.8248
  • F1: 0.8240

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 850

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.2732 50 1.4704 0.4704 0.4864 0.4704 0.4383
No log 0.5464 100 1.1159 0.5742 0.5936 0.5742 0.5676
No log 0.8197 150 0.9276 0.6441 0.6564 0.6441 0.6391
No log 1.0929 200 0.7966 0.7064 0.7146 0.7064 0.7057
No log 1.3661 250 0.7308 0.7317 0.7408 0.7317 0.7291
No log 1.6393 300 0.6640 0.7571 0.7624 0.7571 0.7560
No log 1.9126 350 0.5874 0.7940 0.7975 0.7940 0.7931
No log 2.1858 400 0.6288 0.7863 0.7958 0.7863 0.7840
No log 2.4590 450 0.5621 0.8055 0.8128 0.8055 0.8048
0.8255 2.7322 500 0.5799 0.8094 0.8181 0.8094 0.8087
0.8255 3.0055 550 0.5560 0.7994 0.8041 0.7994 0.7978
0.8255 3.2787 600 0.5402 0.8301 0.8341 0.8301 0.8305
0.8255 3.5519 650 0.5534 0.8201 0.8287 0.8201 0.8197
0.8255 3.8251 700 0.5439 0.8248 0.8333 0.8248 0.8249
0.8255 4.0984 750 0.5402 0.8248 0.8304 0.8248 0.8244
0.8255 4.3716 800 0.5363 0.8271 0.8309 0.8271 0.8262
0.8255 4.6448 850 0.5515 0.8248 0.8311 0.8248 0.8240

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.2.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0