Upload 2 files
Browse files- configuration_nemotron_h.py +243 -0
- modeling_nemotron_h.py +1632 -0
    	
        configuration_nemotron_h.py
    ADDED
    
    | @@ -0,0 +1,243 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
         | 
| 4 | 
            +
            #
         | 
| 5 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 6 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 7 | 
            +
            # You may obtain a copy of the License at
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 10 | 
            +
            #
         | 
| 11 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 12 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 13 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 14 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 15 | 
            +
            # limitations under the License.
         | 
| 16 | 
            +
            """NemotronH model configuration"""
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            import re
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 21 | 
            +
            from transformers.utils import logging
         | 
| 22 | 
            +
             | 
| 23 | 
            +
             | 
| 24 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            class NemotronHConfig(PretrainedConfig):
         | 
| 28 | 
            +
                r"""
         | 
| 29 | 
            +
                This is the configuration class to store the configuration of a [`NemotronHModel`]. It is used to instantiate a
         | 
| 30 | 
            +
                NemotronH model according to the specified arguments, defining the model architecture. Instantiating a configuration
         | 
| 31 | 
            +
                with the defaults will yield a similar configuration to that of the NemotronH-v0.1 model.
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                [todo](todo)
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 36 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 37 | 
            +
             | 
| 38 | 
            +
             | 
| 39 | 
            +
                Args:
         | 
| 40 | 
            +
                    vocab_size (`int`, *optional*, defaults to 131072):
         | 
| 41 | 
            +
                        Vocabulary size of the NemotronH model. Defines the number of different tokens that can be represented by the
         | 
| 42 | 
            +
                        `inputs_ids` passed when calling [`NemotronHModel`]
         | 
| 43 | 
            +
                    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
         | 
| 44 | 
            +
                        Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
         | 
| 45 | 
            +
                        model has a output word embedding layer.
         | 
| 46 | 
            +
                    hidden_size (`int`, *optional*, defaults to 4096):
         | 
| 47 | 
            +
                        Dimension of the hidden representations.
         | 
| 48 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 21504):
         | 
| 49 | 
            +
                        Dimension of the MLP representations.
         | 
| 50 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 52):
         | 
| 51 | 
            +
                        Number of hidden layers in the Transformer encoder.
         | 
| 52 | 
            +
                    hybrid_override_pattern (`str`, *optional*, defaults to `"M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-"`):
         | 
| 53 | 
            +
                        The pattern of the hybrid model. The pattern is a string of characters where each character represents M: Mamba2, *: Attention, -: MLP
         | 
| 54 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         | 
| 55 | 
            +
                        Number of attention heads for each attention layer in the Transformer encoder.
         | 
| 56 | 
            +
                    attention_head_dim (`int`, *optional*, defaults to 128):
         | 
| 57 | 
            +
                        Dimension of each attention head.
         | 
| 58 | 
            +
                    num_key_value_heads (`int`, *optional*, defaults to 8):
         | 
| 59 | 
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         | 
| 60 | 
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         | 
| 61 | 
            +
                        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.
         | 
| 62 | 
            +
                    mlp_hidden_act (`str`, *optional*, defaults to "relu2"):
         | 
| 63 | 
            +
                        The non-linear activation function in the MLP layers.
         | 
| 64 | 
            +
                    attention_bias (`bool`, *optional*, defaults to `False`):
         | 
| 65 | 
            +
                        Whether to use bias in attention layers.
         | 
| 66 | 
            +
                    mlp_bias (`bool`, *optional*, defaults to `False`):
         | 
| 67 | 
            +
                        Whether to use bias in MLP layers.
         | 
| 68 | 
            +
                    use_bias (`bool`, *optional*, defaults to `False`):
         | 
| 69 | 
            +
                        Whether to use bias in the model.
         | 
| 70 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 71 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 72 | 
            +
                    layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
         | 
| 73 | 
            +
                        The epsilon used by the layer normalization layers.
         | 
| 74 | 
            +
                    residual_in_fp32 (`bool`, *optional*, defaults to `False`):
         | 
| 75 | 
            +
                        Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model.
         | 
| 76 | 
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         | 
| 77 | 
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         | 
| 78 | 
            +
                        relevant if `config.is_decoder=True`.
         | 
| 79 | 
            +
                    num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
         | 
| 80 | 
            +
                        Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
         | 
| 81 | 
            +
                        integer value, only last `num_logits_to_keep` logits will be calculated.
         | 
| 82 | 
            +
                    pad_token_id (`int`, *optional*, defaults to 0):
         | 
| 83 | 
            +
                        The id of the padding token.
         | 
| 84 | 
            +
                    bos_token_id (`int`, *optional*, defaults to 1):
         | 
| 85 | 
            +
                        The id of the "beginning-of-sequence" token.
         | 
| 86 | 
            +
                    eos_token_id (`int`, *optional*, defaults to 2):
         | 
| 87 | 
            +
                        The id of the "end-of-sequence" token.
         | 
| 88 | 
            +
                    sliding_window (`int`, *optional*, defaults to None):
         | 
| 89 | 
            +
                        Sliding window attention window size.
         | 
| 90 | 
            +
                    max_position_embeddings (`int`, *optional*, defaults to 4096):
         | 
| 91 | 
            +
                        The maximum sequence length that this model might ever be used with.
         | 
| 92 | 
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         | 
| 93 | 
            +
                        The dropout ratio for the attention probabilities.
         | 
| 94 | 
            +
                    hidden_dropout (`float`, *optional*, defaults to 0.0):
         | 
| 95 | 
            +
                        The dropout ratio for the hidden states.
         | 
| 96 | 
            +
                    use_mamba_kernels (`bool`, *optional*, defaults to `True`):
         | 
| 97 | 
            +
                        Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and
         | 
| 98 | 
            +
                        `causal-conv1d` are installed, and the mamba modules are running on a CUDA device.
         | 
| 99 | 
            +
                    ssm_state_size (`int`, *optional*, defaults to 128):
         | 
| 100 | 
            +
                        The dimension of the mamba state space latents.
         | 
| 101 | 
            +
                    mamba_num_heads (`int`, *optional*, defaults to 128):
         | 
| 102 | 
            +
                        Number of heads in Mamba layers.
         | 
| 103 | 
            +
                    mamba_n_groups (`int`, *optional*, defaults to 8):
         | 
| 104 | 
            +
                        Number of groups in Mamba layers.
         | 
| 105 | 
            +
                    mamba_head_dim (`int`, *optional*, defaults to 64):
         | 
| 106 | 
            +
                        Dimension of each Mamba head.
         | 
| 107 | 
            +
                    mamba_d_conv (`int`, *optional*, defaults to 4):
         | 
| 108 | 
            +
                        The size of the mamba convolution kernel.
         | 
| 109 | 
            +
                    mamba_expand (`int`, *optional*, defaults to 2):
         | 
| 110 | 
            +
                        Expanding factor used to determine the mamba intermediate size.
         | 
| 111 | 
            +
                    mamba_hidden_act (`str`, *optional*, defaults to "silu"):
         | 
| 112 | 
            +
                        The non-linear activation function in the Mamba layers.
         | 
| 113 | 
            +
                    mamba_dt_min (`float`, *optional*, defaults to 0.001):
         | 
| 114 | 
            +
                        Minimum value for the time step in Mamba.
         | 
| 115 | 
            +
                    mamba_dt_max (`float`, *optional*, defaults to 0.1):
         | 
| 116 | 
            +
                        Maximum value for the time step in Mamba.
         | 
| 117 | 
            +
                    mamba_dt_limit (`tuple`, *optional*, defaults to (0.0, float("inf"))):
         | 
| 118 | 
            +
                        Limits for the time step in Mamba.
         | 
| 119 | 
            +
                    mamba_dt_init_floor (`float`, *optional*, defaults to 1e-4):
         | 
| 120 | 
            +
                        Floor value for time step initialization in Mamba.
         | 
| 121 | 
            +
                    mamba_conv_bias (`bool`, *optional*, defaults to `True`):
         | 
| 122 | 
            +
                        Whether to use bias in the convolution layer of the mamba mixer block.
         | 
| 123 | 
            +
                    mamba_proj_bias (`bool`, *optional*, defaults to `False`):
         | 
| 124 | 
            +
                        Whether to use bias in the input and output projections of the mamba mixer block.
         | 
| 125 | 
            +
                    mamba_chunk_size (`int`, *optional*, defaults to 256):
         | 
| 126 | 
            +
                        Size of chunks for Mamba processing.
         | 
| 127 | 
            +
                    rescale_prenorm_residual (`bool`, *optional*, defaults to `True`):
         | 
| 128 | 
            +
                        Whether to rescale the pre-normalization residual connections.
         | 
| 129 | 
            +
                """
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                model_type = "nemotron_h"
         | 
| 132 | 
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                def __init__(
         | 
| 135 | 
            +
                    self,
         | 
| 136 | 
            +
                    vocab_size=131072,
         | 
| 137 | 
            +
                    tie_word_embeddings=False,
         | 
| 138 | 
            +
                    hidden_size=4096,
         | 
| 139 | 
            +
                    intermediate_size=21504,
         | 
| 140 | 
            +
                    num_hidden_layers=52,
         | 
| 141 | 
            +
                    hybrid_override_pattern="M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-",
         | 
| 142 | 
            +
                    num_attention_heads=32,
         | 
| 143 | 
            +
                    attention_head_dim=128,
         | 
| 144 | 
            +
                    num_key_value_heads=8,  # nemo: num_query_groups
         | 
| 145 | 
            +
                    mlp_hidden_act="relu2",
         | 
| 146 | 
            +
                    attention_bias=False,
         | 
| 147 | 
            +
                    mlp_bias=False,
         | 
| 148 | 
            +
                    use_bias=False,
         | 
| 149 | 
            +
                    initializer_range=0.02, # nemo: init_method_std
         | 
| 150 | 
            +
                    layer_norm_epsilon=1e-5, # nemo: layernorm_epsilon
         | 
| 151 | 
            +
                    residual_in_fp32=False,  #  Megatron Core default value
         | 
| 152 | 
            +
                    use_cache=True,
         | 
| 153 | 
            +
                    num_logits_to_keep=1,
         | 
| 154 | 
            +
                    pad_token_id=0,
         | 
| 155 | 
            +
                    bos_token_id=1,
         | 
| 156 | 
            +
                    eos_token_id=2,
         | 
| 157 | 
            +
                    sliding_window=None,
         | 
| 158 | 
            +
                    max_position_embeddings=4096,
         | 
| 159 | 
            +
                    attention_dropout=0.0,
         | 
| 160 | 
            +
                    hidden_dropout=0.0, # * ADDED
         | 
| 161 | 
            +
                    use_mamba_kernels=True,
         | 
| 162 | 
            +
                    ssm_state_size=128, # mamba_state_size
         | 
| 163 | 
            +
                    mamba_num_heads=128,
         | 
| 164 | 
            +
                    mamba_n_groups=8,  # nemo: mamba_ssm_ngroups = num_heads
         | 
| 165 | 
            +
                    mamba_head_dim=64,
         | 
| 166 | 
            +
                    mamba_d_conv=4,
         | 
| 167 | 
            +
                    mamba_expand=2,
         | 
| 168 | 
            +
                    mamba_hidden_act="silu",
         | 
| 169 | 
            +
                    mamba_dt_min=0.001,
         | 
| 170 | 
            +
                    mamba_dt_max=0.1,
         | 
| 171 | 
            +
                    mamba_dt_limit=(0.0, float("inf")),
         | 
| 172 | 
            +
                    mamba_dt_init_floor=1e-4,
         | 
| 173 | 
            +
                    mamba_conv_bias=True,
         | 
| 174 | 
            +
                    mamba_proj_bias=False,
         | 
| 175 | 
            +
                    mamba_chunk_size=256,
         | 
| 176 | 
            +
                    rescale_prenorm_residual=True,
         | 
| 177 | 
            +
                    **kwargs,
         | 
| 178 | 
            +
                ):
         | 
| 179 | 
            +
                    self.vocab_size = vocab_size
         | 
| 180 | 
            +
                    self.tie_word_embeddings = tie_word_embeddings
         | 
| 181 | 
            +
                    self.hidden_size = hidden_size
         | 
| 182 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 183 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 184 | 
            +
                    self.hybrid_override_pattern = hybrid_override_pattern
         | 
| 185 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 186 | 
            +
                    self.attention_head_dim = attention_head_dim
         | 
| 187 | 
            +
                    self.sliding_window = sliding_window
         | 
| 188 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 189 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 190 | 
            +
                    self.hidden_dropout = hidden_dropout
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                    # Validate hybrid_override_pattern
         | 
| 193 | 
            +
                    # M: Mamba2, *: Attention, -: MLP
         | 
| 194 | 
            +
                    assert len(self.hybrid_override_pattern) == self.num_hidden_layers, "hybrid_override_pattern must have the same length as num_hidden_layers"
         | 
| 195 | 
            +
                    assert re.match(r"^[*-M]+$", self.hybrid_override_pattern), "hybrid_override_pattern must only contain characters 'M', '*', or '-'"
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    # for backward compatibility
         | 
| 198 | 
            +
                    if num_key_value_heads is None:
         | 
| 199 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 202 | 
            +
                    self.mlp_hidden_act = mlp_hidden_act
         | 
| 203 | 
            +
                    self.attention_bias = attention_bias
         | 
| 204 | 
            +
                    self.mlp_bias = mlp_bias
         | 
| 205 | 
            +
                    self.use_bias = use_bias
         | 
| 206 | 
            +
                    self.initializer_range = initializer_range
         | 
| 207 | 
            +
                    self.layer_norm_epsilon = layer_norm_epsilon
         | 
| 208 | 
            +
                    self.residual_in_fp32 = residual_in_fp32
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                    self.use_cache = use_cache
         | 
| 211 | 
            +
                    self.num_logits_to_keep = num_logits_to_keep
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    self.use_mamba_kernels = use_mamba_kernels
         | 
| 214 | 
            +
                    self.n_groups = mamba_n_groups
         | 
| 215 | 
            +
                    self.mamba_head_dim = mamba_head_dim
         | 
| 216 | 
            +
                    self.ssm_state_size = ssm_state_size
         | 
| 217 | 
            +
                    self.mamba_num_heads = mamba_num_heads
         | 
| 218 | 
            +
                    self.conv_kernel = mamba_d_conv
         | 
| 219 | 
            +
                    self.expand = mamba_expand
         | 
| 220 | 
            +
                    self.mamba_hidden_act = mamba_hidden_act
         | 
| 221 | 
            +
                    self.time_step_min = mamba_dt_min
         | 
| 222 | 
            +
                    self.time_step_max = mamba_dt_max
         | 
| 223 | 
            +
                    self.time_step_limit = mamba_dt_limit
         | 
| 224 | 
            +
                    self.time_step_floor = mamba_dt_init_floor
         | 
| 225 | 
            +
                    self.use_conv_bias = mamba_conv_bias
         | 
| 226 | 
            +
                    self.mamba_proj_bias = mamba_proj_bias
         | 
| 227 | 
            +
                    self.chunk_size = mamba_chunk_size
         | 
| 228 | 
            +
                    self.rescale_prenorm_residual = rescale_prenorm_residual
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                    super().__init__(
         | 
| 231 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 232 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 233 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 234 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 235 | 
            +
                        **kwargs,
         | 
| 236 | 
            +
                    )
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                @property
         | 
| 239 | 
            +
                def layers_block_type(self):
         | 
| 240 | 
            +
                    return [
         | 
| 241 | 
            +
                        "mamba" if self.hybrid_override_pattern[i] == "M" else
         | 
| 242 | 
            +
                        "attention" if self.hybrid_override_pattern[i] == "*" else "mlp"
         | 
| 243 | 
            +
                        for i in range(self.num_hidden_layers)]
         | 
    	
        modeling_nemotron_h.py
    ADDED
    
    | @@ -0,0 +1,1632 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2024 HuggingFace Inc. team.
         | 
| 3 | 
            +
            # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
         | 
| 4 | 
            +
            #
         | 
| 5 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 6 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 7 | 
            +
            # You may obtain a copy of the License at
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 10 | 
            +
            #
         | 
| 11 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 12 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 13 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 14 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 15 | 
            +
            # limitations under the License.
         | 
| 16 | 
            +
            """PyTorch NemotronH model."""
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            import math
         | 
| 19 | 
            +
            from dataclasses import dataclass
         | 
| 20 | 
            +
            from typing import Any, Dict, Optional, Tuple, Union
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            import torch
         | 
| 23 | 
            +
            import torch.utils.checkpoint
         | 
| 24 | 
            +
            from torch import nn
         | 
| 25 | 
            +
            from torch.nn import CrossEntropyLoss
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            from transformers.activations import ACT2FN
         | 
| 28 | 
            +
            from transformers.cache_utils import DynamicCache  # we need __iter__ and __len__ of pkv
         | 
| 29 | 
            +
            from transformers.generation import GenerationMixin
         | 
| 30 | 
            +
            from transformers.modeling_attn_mask_utils import (
         | 
| 31 | 
            +
                AttentionMaskConverter,
         | 
| 32 | 
            +
            )
         | 
| 33 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 34 | 
            +
            from transformers.utils import (
         | 
| 35 | 
            +
                ModelOutput,
         | 
| 36 | 
            +
                add_code_sample_docstrings,
         | 
| 37 | 
            +
                add_start_docstrings,
         | 
| 38 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 39 | 
            +
                logging,
         | 
| 40 | 
            +
            )
         | 
| 41 | 
            +
            from transformers.utils.import_utils import (
         | 
| 42 | 
            +
                is_causal_conv1d_available,
         | 
| 43 | 
            +
                is_flash_attn_2_available,
         | 
| 44 | 
            +
                is_flash_attn_greater_or_equal_2_10,
         | 
| 45 | 
            +
                is_mamba_2_ssm_available,    
         | 
| 46 | 
            +
            )
         | 
| 47 | 
            +
            from .configuration_nemotron_h import NemotronHConfig
         | 
| 48 | 
            +
             | 
| 49 | 
            +
             | 
| 50 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 51 | 
            +
             | 
| 52 | 
            +
             | 
| 53 | 
            +
            # Copied from transformers.models.mamba.modeling_mamba2.modeling_mamba2.py with MAMBA2->NEMOTRONH,Mamba2->NemotronH
         | 
| 54 | 
            +
            # For Mamba2 components Mamba2->NemotronHMamba2
         | 
| 55 | 
            +
            if is_mamba_2_ssm_available():
         | 
| 56 | 
            +
                from mamba_ssm.ops.triton.selective_state_update import selective_state_update
         | 
| 57 | 
            +
                from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined
         | 
| 58 | 
            +
            else:
         | 
| 59 | 
            +
                mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined, selective_state_update = None, None, None
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            try:
         | 
| 62 | 
            +
                #from mamba_ssm.ops.triton.layernorm_gated import RMSNorm as RMSNormGated
         | 
| 63 | 
            +
                from mamba_ssm.ops.triton.layernorm_gated import rmsnorm_fn
         | 
| 64 | 
            +
            except ImportError:
         | 
| 65 | 
            +
                raise ImportError("mamba-ssm is required by the Mamba model but cannot be imported")
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            if is_causal_conv1d_available():
         | 
| 68 | 
            +
                from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
         | 
| 69 | 
            +
            else:
         | 
| 70 | 
            +
                causal_conv1d_update, causal_conv1d_fn = None, None
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            if is_flash_attn_2_available():
         | 
| 73 | 
            +
                from transformers.modeling_flash_attention_utils import _flash_attention_forward
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            is_fast_path_available = all(
         | 
| 76 | 
            +
                (
         | 
| 77 | 
            +
                    selective_state_update,
         | 
| 78 | 
            +
                    mamba_chunk_scan_combined,
         | 
| 79 | 
            +
                    mamba_split_conv1d_scan_combined,
         | 
| 80 | 
            +
                    causal_conv1d_fn,
         | 
| 81 | 
            +
                    causal_conv1d_update,
         | 
| 82 | 
            +
                )
         | 
| 83 | 
            +
            )
         | 
| 84 | 
            +
             | 
| 85 | 
            +
             | 
| 86 | 
            +
            _CHECKPOINT_FOR_DOC = "nvidia/Nemotron-H-56B-Base-8K"
         | 
| 87 | 
            +
            _CONFIG_FOR_DOC = "NemotronHConfig"
         | 
| 88 | 
            +
             | 
| 89 | 
            +
             | 
| 90 | 
            +
            # Helper methods for segment sum computation
         | 
| 91 | 
            +
             | 
| 92 | 
            +
             | 
| 93 | 
            +
            def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int):
         | 
| 94 | 
            +
                """
         | 
| 95 | 
            +
                Padding x tensor with `pad_size` on the seq_len dim (dim=1)
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                Assumes that we only have tensors of either size 4 or 3
         | 
| 98 | 
            +
                """
         | 
| 99 | 
            +
                pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0)
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0)
         | 
| 102 | 
            +
             | 
| 103 | 
            +
             | 
| 104 | 
            +
            def reshape_into_chunks(input_tensor, pad_size, chunk_size):
         | 
| 105 | 
            +
                """
         | 
| 106 | 
            +
                Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and
         | 
| 107 | 
            +
                simultaneously splitting it into chunk sequences.
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                Assumes that we only have tensors of either size 4 or 3
         | 
| 110 | 
            +
                """
         | 
| 111 | 
            +
                # [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...]
         | 
| 112 | 
            +
                input_tensor = pad_tensor_by_size(input_tensor, pad_size)
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                if len(input_tensor.shape) == 3:
         | 
| 115 | 
            +
                    # [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads]
         | 
| 116 | 
            +
                    return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2])
         | 
| 117 | 
            +
                else:
         | 
| 118 | 
            +
                    # [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size]
         | 
| 119 | 
            +
                    return input_tensor.reshape(
         | 
| 120 | 
            +
                        input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3]
         | 
| 121 | 
            +
                    )
         | 
| 122 | 
            +
             | 
| 123 | 
            +
             | 
| 124 | 
            +
            def segment_sum(input_tensor):
         | 
| 125 | 
            +
                """
         | 
| 126 | 
            +
                More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions.
         | 
| 127 | 
            +
                """
         | 
| 128 | 
            +
                chunk_size = input_tensor.size(-1)
         | 
| 129 | 
            +
                # 1. expand input tensor to have an additional dimension and repeat along that dimension
         | 
| 130 | 
            +
                # [..., chunk_size] -> [..., chunk_size, chunk_size]
         | 
| 131 | 
            +
                input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size)
         | 
| 132 | 
            +
                # 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag
         | 
| 133 | 
            +
                mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1)
         | 
| 134 | 
            +
                input_tensor = input_tensor.masked_fill(~mask, 0)
         | 
| 135 | 
            +
                # 3. compute actual cumsum
         | 
| 136 | 
            +
                tensor_segsum = torch.cumsum(input_tensor, dim=-2)
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                # 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time)
         | 
| 139 | 
            +
                mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0)
         | 
| 140 | 
            +
                tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf)
         | 
| 141 | 
            +
                return tensor_segsum
         | 
| 142 | 
            +
             | 
| 143 | 
            +
             | 
| 144 | 
            +
            def apply_mask_to_padding_states(hidden_states, attention_mask):
         | 
| 145 | 
            +
                """
         | 
| 146 | 
            +
                Tunes out the hidden states for padding tokens, see https://github.com/state-spaces/mamba/issues/66
         | 
| 147 | 
            +
                """
         | 
| 148 | 
            +
                if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
         | 
| 149 | 
            +
                    dtype = hidden_states.dtype
         | 
| 150 | 
            +
                    hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                return hidden_states
         | 
| 153 | 
            +
             | 
| 154 | 
            +
            # Copied from https://github.com/huggingface/transformers/blob/main/src/transformers/models/jamba/modeling_jamba.py
         | 
| 155 | 
            +
            class HybridMambaAttentionDynamicCache(DynamicCache):
         | 
| 156 | 
            +
                """
         | 
| 157 | 
            +
                A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
         | 
| 158 | 
            +
                (which has a constant shape regardless of seq_len).
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
         | 
| 161 | 
            +
                and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
         | 
| 162 | 
            +
                For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
         | 
| 163 | 
            +
                while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
         | 
| 164 | 
            +
                For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
         | 
| 165 | 
            +
                while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
         | 
| 166 | 
            +
                and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
         | 
| 167 | 
            +
                """
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                def __init__(self, config, batch_size, dtype=torch.float16, device=None):
         | 
| 170 | 
            +
                    super().__init__()
         | 
| 171 | 
            +
                    self.dtype = dtype
         | 
| 172 | 
            +
                    self.hybrid_override_pattern = config.hybrid_override_pattern
         | 
| 173 | 
            +
                    self.has_previous_state = False  # only used by mamba
         | 
| 174 | 
            +
                    intermediate_size = config.expand * config.hidden_size
         | 
| 175 | 
            +
                    ssm_state_size = config.ssm_state_size
         | 
| 176 | 
            +
                    conv_kernel_size = config.conv_kernel
         | 
| 177 | 
            +
                    self.conv_states = []
         | 
| 178 | 
            +
                    self.ssm_states = []
         | 
| 179 | 
            +
                    self.transformer_layers = []
         | 
| 180 | 
            +
                    for i in range(config.num_hidden_layers):
         | 
| 181 | 
            +
                        if self.hybrid_override_pattern[i] == "M":
         | 
| 182 | 
            +
                            # Mamba layer
         | 
| 183 | 
            +
                            self.conv_states += [
         | 
| 184 | 
            +
                                torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
         | 
| 185 | 
            +
                            ]
         | 
| 186 | 
            +
                            self.ssm_states += [
         | 
| 187 | 
            +
                                torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
         | 
| 188 | 
            +
                            ]
         | 
| 189 | 
            +
                        else:
         | 
| 190 | 
            +
                            # Attention or MLP layer
         | 
| 191 | 
            +
                            self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
         | 
| 192 | 
            +
                            self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
         | 
| 193 | 
            +
                            self.transformer_layers.append(i)
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                    self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
         | 
| 196 | 
            +
                    self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                def update(
         | 
| 199 | 
            +
                    self,
         | 
| 200 | 
            +
                    key_states: torch.Tensor,
         | 
| 201 | 
            +
                    value_states: torch.Tensor,
         | 
| 202 | 
            +
                    layer_idx: int,
         | 
| 203 | 
            +
                    cache_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 204 | 
            +
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         | 
| 205 | 
            +
                    # Update the cache
         | 
| 206 | 
            +
                    if self.key_cache[layer_idx].shape[-1] == 0:
         | 
| 207 | 
            +
                        self.key_cache[layer_idx] = key_states
         | 
| 208 | 
            +
                        self.value_cache[layer_idx] = value_states
         | 
| 209 | 
            +
                    else:
         | 
| 210 | 
            +
                        self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
         | 
| 211 | 
            +
                        self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    return self.key_cache[layer_idx], self.value_cache[layer_idx]
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                def reorder_cache(self, beam_idx: torch.LongTensor):
         | 
| 216 | 
            +
                    """Reorders the cache for beam search, given the selected beam indices."""
         | 
| 217 | 
            +
                    for layer_idx in range(len(self.key_cache)):
         | 
| 218 | 
            +
                        device = self.key_cache[layer_idx].device
         | 
| 219 | 
            +
                        self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
         | 
| 220 | 
            +
                        device = self.value_cache[layer_idx].device
         | 
| 221 | 
            +
                        self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                        device = self.conv_states[layer_idx].device
         | 
| 224 | 
            +
                        self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
         | 
| 225 | 
            +
                        device = self.ssm_states[layer_idx].device
         | 
| 226 | 
            +
                        self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
         | 
| 229 | 
            +
                    """Returns the sequence length of the cached states. A layer index can be optionally passed."""
         | 
| 230 | 
            +
                    # take any layer that contains cache and not empty tensor
         | 
| 231 | 
            +
                    layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx
         | 
| 232 | 
            +
                    if len(self.key_cache) <= layer_idx:
         | 
| 233 | 
            +
                        return 0
         | 
| 234 | 
            +
                    return self.key_cache[layer_idx].shape[-2]
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
         | 
| 237 | 
            +
                    raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                @classmethod
         | 
| 240 | 
            +
                def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
         | 
| 241 | 
            +
                    raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                # Copied from modeling_mamba2.py
         | 
| 244 | 
            +
                def update_conv_state(
         | 
| 245 | 
            +
                    self, layer_idx: int, new_conv_state: torch.Tensor, cache_init: bool = False
         | 
| 246 | 
            +
                ) -> torch.Tensor:
         | 
| 247 | 
            +
                    if cache_init:
         | 
| 248 | 
            +
                        self.conv_states[layer_idx] = new_conv_state.to(self.conv_states.device)
         | 
| 249 | 
            +
                    else:
         | 
| 250 | 
            +
                        self.conv_states[layer_idx] = self.conv_states[layer_idx].roll(shifts=-1, dims=-1)
         | 
| 251 | 
            +
                        self.conv_states[layer_idx][:, :, -1] = new_conv_state[:, 0, :].to(self.conv_states.device)
         | 
| 252 | 
            +
                    return self.conv_states[layer_idx]
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor):
         | 
| 255 | 
            +
                    self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states.device)
         | 
| 256 | 
            +
                    return self.ssm_states[layer_idx]
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                def reset(self):
         | 
| 259 | 
            +
                    self.conv_states.zero_()
         | 
| 260 | 
            +
                    self.ssm_states.zero_()
         | 
| 261 | 
            +
             | 
| 262 | 
            +
            class MambaRMSNormGated(torch.nn.Module):
         | 
| 263 | 
            +
                def __init__(self, hidden_size, group_size, eps=1e-5):
         | 
| 264 | 
            +
                    super().__init__()
         | 
| 265 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 266 | 
            +
                    self.variance_epsilon = eps
         | 
| 267 | 
            +
                    self.group_size = group_size
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                # jan28b version
         | 
| 270 | 
            +
                def forward(self, hidden_states, gate=None):
         | 
| 271 | 
            +
                    return rmsnorm_fn(x=hidden_states,
         | 
| 272 | 
            +
                                      weight=self.weight,
         | 
| 273 | 
            +
                                      bias=None, # No bias
         | 
| 274 | 
            +
                                      z=gate,
         | 
| 275 | 
            +
                                      eps=self.variance_epsilon,
         | 
| 276 | 
            +
                                      group_size=self.group_size,
         | 
| 277 | 
            +
                                      norm_before_gate=False
         | 
| 278 | 
            +
                    )
         | 
| 279 | 
            +
             | 
| 280 | 
            +
            class NemotronHMamba2Mixer(nn.Module):
         | 
| 281 | 
            +
                """
         | 
| 282 | 
            +
                Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
         | 
| 283 | 
            +
                A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
         | 
| 284 | 
            +
                ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
         | 
| 285 | 
            +
                and is why Mamba is called **selective** state spaces)
         | 
| 286 | 
            +
                """
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                def __init__(self, config: NemotronHConfig, layer_idx: int):
         | 
| 289 | 
            +
                    super().__init__()
         | 
| 290 | 
            +
                    self.num_heads = config.mamba_num_heads
         | 
| 291 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 292 | 
            +
                    self.ssm_state_size = config.ssm_state_size
         | 
| 293 | 
            +
                    self.conv_kernel_size = config.conv_kernel
         | 
| 294 | 
            +
                    self.intermediate_size = config.mamba_num_heads * config.mamba_head_dim
         | 
| 295 | 
            +
                    self.layer_idx = layer_idx
         | 
| 296 | 
            +
                    self.use_conv_bias = config.use_conv_bias
         | 
| 297 | 
            +
                    self.activation = config.mamba_hidden_act
         | 
| 298 | 
            +
                    self.act = ACT2FN[config.mamba_hidden_act]
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                    self.layer_norm_epsilon = config.layer_norm_epsilon
         | 
| 301 | 
            +
             | 
| 302 | 
            +
                    self.n_groups = config.n_groups
         | 
| 303 | 
            +
                    self.head_dim = config.mamba_head_dim
         | 
| 304 | 
            +
                    self.chunk_size = config.chunk_size
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                    self.time_step_limit = config.time_step_limit
         | 
| 307 | 
            +
                    self.time_step_min = config.time_step_min
         | 
| 308 | 
            +
                    self.time_step_max = config.time_step_max
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                    self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
         | 
| 311 | 
            +
                    self.conv1d = nn.Conv1d(
         | 
| 312 | 
            +
                        in_channels=self.conv_dim,
         | 
| 313 | 
            +
                        out_channels=self.conv_dim,
         | 
| 314 | 
            +
                        bias=config.use_conv_bias,
         | 
| 315 | 
            +
                        kernel_size=config.conv_kernel,
         | 
| 316 | 
            +
                        groups=self.conv_dim,
         | 
| 317 | 
            +
                        padding=config.conv_kernel - 1,
         | 
| 318 | 
            +
                    )
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                    # projection of the input hidden states
         | 
| 321 | 
            +
                    projection_size = self.intermediate_size + self.conv_dim + self.num_heads
         | 
| 322 | 
            +
                    self.in_proj = nn.Linear(
         | 
| 323 | 
            +
                        self.hidden_size,
         | 
| 324 | 
            +
                        projection_size,
         | 
| 325 | 
            +
                        bias=config.use_bias,
         | 
| 326 | 
            +
                    )
         | 
| 327 | 
            +
                    # selective projection used to make dt, B and C input dependant
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                    # time step projection (discretization)
         | 
| 330 | 
            +
                    # instantiate once and copy inv_dt in init_weights of PretrainedModel
         | 
| 331 | 
            +
                    self.dt_bias = nn.Parameter(torch.ones(self.num_heads))
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                    # S4D real initialization. These are not discretized!
         | 
| 334 | 
            +
                    # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
         | 
| 335 | 
            +
                    A = torch.arange(1, self.num_heads + 1)
         | 
| 336 | 
            +
                    self.A_log = nn.Parameter(torch.log(A))
         | 
| 337 | 
            +
                    self.A_log._no_weight_decay = True
         | 
| 338 | 
            +
                    self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon, group_size=self.intermediate_size // self.n_groups)
         | 
| 339 | 
            +
                    self.D = nn.Parameter(torch.ones(self.num_heads))
         | 
| 340 | 
            +
                    self.D._no_weight_decay = True
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                    self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
         | 
| 343 | 
            +
                    self.use_bias = config.use_bias
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                    if not is_fast_path_available:
         | 
| 346 | 
            +
                        logger.warning_once(
         | 
| 347 | 
            +
                            "The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`"
         | 
| 348 | 
            +
                            " is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
         | 
| 349 | 
            +
                            " https://github.com/Dao-AILab/causal-conv1d"
         | 
| 350 | 
            +
                        )
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                def cuda_kernels_forward(
         | 
| 353 | 
            +
                    self,
         | 
| 354 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 355 | 
            +
                    cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
         | 
| 356 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 357 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 358 | 
            +
                ):
         | 
| 359 | 
            +
                    # 1. Gated MLP's linear projection
         | 
| 360 | 
            +
                    hidden_states = apply_mask_to_padding_states(hidden_states, attention_mask)
         | 
| 361 | 
            +
                    projected_states = self.in_proj(hidden_states)
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                    # Set up dimensions for reshapes later
         | 
| 364 | 
            +
                    batch_size, seq_len, _ = hidden_states.shape
         | 
| 365 | 
            +
                    groups_time_state_size = self.n_groups * self.ssm_state_size
         | 
| 366 | 
            +
                    d_mlp = (
         | 
| 367 | 
            +
                        projected_states.shape[-1]
         | 
| 368 | 
            +
                        - 2 * self.intermediate_size
         | 
| 369 | 
            +
                        - 2 * self.n_groups * self.ssm_state_size
         | 
| 370 | 
            +
                        - self.num_heads
         | 
| 371 | 
            +
                    ) // 2
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                    # Single step calculations via cache
         | 
| 374 | 
            +
                    if cache_params is not None and cache_position is not None and cache_position[0] > 0:
         | 
| 375 | 
            +
                        _, _, gate, hidden_states_B_C, dt = projected_states.squeeze(1).split(
         | 
| 376 | 
            +
                            [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
         | 
| 377 | 
            +
                        )
         | 
| 378 | 
            +
             | 
| 379 | 
            +
                        # 2. Convolution sequence transformation
         | 
| 380 | 
            +
                        hidden_states_B_C = causal_conv1d_update(
         | 
| 381 | 
            +
                            hidden_states_B_C,
         | 
| 382 | 
            +
                            cache_params.conv_states[self.layer_idx],
         | 
| 383 | 
            +
                            self.conv1d.weight.squeeze(1),
         | 
| 384 | 
            +
                            self.conv1d.bias,
         | 
| 385 | 
            +
                            self.activation,
         | 
| 386 | 
            +
                        )
         | 
| 387 | 
            +
             | 
| 388 | 
            +
                        hidden_states, B, C = torch.split(
         | 
| 389 | 
            +
                            hidden_states_B_C,
         | 
| 390 | 
            +
                            [self.intermediate_size, groups_time_state_size, groups_time_state_size],
         | 
| 391 | 
            +
                            dim=-1,
         | 
| 392 | 
            +
                        )
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                        # 3. SSM transformation
         | 
| 395 | 
            +
                        A = -torch.exp(self.A_log.float())  # (nheads,)
         | 
| 396 | 
            +
                        A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
         | 
| 397 | 
            +
                        dt = dt[:, :, None].expand(-1, -1, self.head_dim)
         | 
| 398 | 
            +
                        dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
         | 
| 399 | 
            +
                        D = self.D[:, None, ...].expand(-1, self.head_dim)
         | 
| 400 | 
            +
                        B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups)
         | 
| 401 | 
            +
                        C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups)
         | 
| 402 | 
            +
                        hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim)
         | 
| 403 | 
            +
                        hidden_states = selective_state_update(
         | 
| 404 | 
            +
                            cache_params.ssm_states[self.layer_idx],
         | 
| 405 | 
            +
                            hidden_states_reshaped,
         | 
| 406 | 
            +
                            dt,
         | 
| 407 | 
            +
                            A,
         | 
| 408 | 
            +
                            B,
         | 
| 409 | 
            +
                            C,
         | 
| 410 | 
            +
                            D,
         | 
| 411 | 
            +
                            z=None,
         | 
| 412 | 
            +
                            dt_bias=dt_bias,
         | 
| 413 | 
            +
                            dt_softplus=True,
         | 
| 414 | 
            +
                        )
         | 
| 415 | 
            +
                        hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim)
         | 
| 416 | 
            +
                        breakpoint()
         | 
| 417 | 
            +
                        hidden_states = self.norm(hidden_states, gate)
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                        # 4. Final linear projection
         | 
| 420 | 
            +
                        out = self.out_proj(hidden_states)[:, None, ...]
         | 
| 421 | 
            +
             | 
| 422 | 
            +
                    # Fused calculations or step by step if no initialized cache is found
         | 
| 423 | 
            +
                    else:
         | 
| 424 | 
            +
                        A = -torch.exp(self.A_log.float())  # (num_heads) or (intermediate_size, state_size)
         | 
| 425 | 
            +
                        dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit}
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                        # 2-4. Fused kernel for conv1d, SSM, and the final projection
         | 
| 428 | 
            +
                        if self.training and cache_params is None:
         | 
| 429 | 
            +
                            out = mamba_split_conv1d_scan_combined(
         | 
| 430 | 
            +
                                projected_states,
         | 
| 431 | 
            +
                                self.conv1d.weight.squeeze(1),
         | 
| 432 | 
            +
                                self.conv1d.bias,
         | 
| 433 | 
            +
                                self.dt_bias,
         | 
| 434 | 
            +
                                A,
         | 
| 435 | 
            +
                                D=self.D,
         | 
| 436 | 
            +
                                chunk_size=self.chunk_size,
         | 
| 437 | 
            +
                                seq_idx=None,  # was seq_idx
         | 
| 438 | 
            +
                                activation=self.activation,
         | 
| 439 | 
            +
                                rmsnorm_weight=self.norm.weight,
         | 
| 440 | 
            +
                                rmsnorm_eps=self.norm.variance_epsilon,
         | 
| 441 | 
            +
                                outproj_weight=self.out_proj.weight,
         | 
| 442 | 
            +
                                outproj_bias=self.out_proj.bias,
         | 
| 443 | 
            +
                                headdim=self.head_dim,
         | 
| 444 | 
            +
                                ngroups=self.n_groups,
         | 
| 445 | 
            +
                                norm_before_gate=False,
         | 
| 446 | 
            +
                                return_final_states=False,
         | 
| 447 | 
            +
                                **dt_limit_kwargs,
         | 
| 448 | 
            +
                            )
         | 
| 449 | 
            +
             | 
| 450 | 
            +
                        else:
         | 
| 451 | 
            +
                            _, _, gate, hidden_states_B_C, dt = projected_states.split(
         | 
| 452 | 
            +
                                [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
         | 
| 453 | 
            +
                            )
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                            # 2. Convolution sequence transformation
         | 
| 456 | 
            +
                            # Init cache
         | 
| 457 | 
            +
                            if cache_params is not None:
         | 
| 458 | 
            +
                                hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
         | 
| 459 | 
            +
                                conv_states = nn.functional.pad(
         | 
| 460 | 
            +
                                    hidden_states_B_C_transposed,
         | 
| 461 | 
            +
                                    (cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0),
         | 
| 462 | 
            +
                                )
         | 
| 463 | 
            +
                                cache_params.update_conv_state(
         | 
| 464 | 
            +
                                    layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True
         | 
| 465 | 
            +
                                )
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                            if self.activation not in ["silu", "swish"]:
         | 
| 468 | 
            +
                                hidden_states_B_C = self.act(
         | 
| 469 | 
            +
                                    self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2)
         | 
| 470 | 
            +
                                )
         | 
| 471 | 
            +
                            else:
         | 
| 472 | 
            +
                                hidden_states_B_C = causal_conv1d_fn(
         | 
| 473 | 
            +
                                    x=hidden_states_B_C.transpose(1, 2),
         | 
| 474 | 
            +
                                    weight=self.conv1d.weight.squeeze(1),
         | 
| 475 | 
            +
                                    bias=self.conv1d.bias,
         | 
| 476 | 
            +
                                    activation=self.activation,
         | 
| 477 | 
            +
                                ).transpose(1, 2)
         | 
| 478 | 
            +
                            hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
         | 
| 479 | 
            +
                            hidden_states, B, C = torch.split(
         | 
| 480 | 
            +
                                hidden_states_B_C,
         | 
| 481 | 
            +
                                [self.intermediate_size, groups_time_state_size, groups_time_state_size],
         | 
| 482 | 
            +
                                dim=-1,
         | 
| 483 | 
            +
                            )
         | 
| 484 | 
            +
             | 
| 485 | 
            +
                            # 3. SSM transformation
         | 
| 486 | 
            +
                            scan_output, ssm_state = mamba_chunk_scan_combined(
         | 
| 487 | 
            +
                                hidden_states.view(batch_size, seq_len, -1, self.head_dim),
         | 
| 488 | 
            +
                                dt,
         | 
| 489 | 
            +
                                A,
         | 
| 490 | 
            +
                                B.view(batch_size, seq_len, self.n_groups, -1),
         | 
| 491 | 
            +
                                C.view(batch_size, seq_len, self.n_groups, -1),
         | 
| 492 | 
            +
                                chunk_size=self.chunk_size,
         | 
| 493 | 
            +
                                D=self.D,
         | 
| 494 | 
            +
                                z=None,
         | 
| 495 | 
            +
                                seq_idx=None,
         | 
| 496 | 
            +
                                return_final_states=True,
         | 
| 497 | 
            +
                                dt_bias=self.dt_bias,
         | 
| 498 | 
            +
                                dt_softplus=True,
         | 
| 499 | 
            +
                                **dt_limit_kwargs,
         | 
| 500 | 
            +
                            )
         | 
| 501 | 
            +
             | 
| 502 | 
            +
                            # Init cache
         | 
| 503 | 
            +
                            if ssm_state is not None and cache_params is not None:
         | 
| 504 | 
            +
                                cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state)
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                            scan_output = scan_output.view(batch_size, seq_len, -1)
         | 
| 507 | 
            +
             | 
| 508 | 
            +
                            # Multiply "gate" branch and apply extra normalization layer
         | 
| 509 | 
            +
                            scan_output = self.norm(scan_output, gate)
         | 
| 510 | 
            +
             | 
| 511 | 
            +
                            # 4. Final linear projection
         | 
| 512 | 
            +
                            out = self.out_proj(scan_output)
         | 
| 513 | 
            +
                    return out
         | 
| 514 | 
            +
             | 
| 515 | 
            +
                # fmt: off
         | 
| 516 | 
            +
                def torch_forward(self, input_states, cache_params: Optional[HybridMambaAttentionDynamicCache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None):
         | 
| 517 | 
            +
                    batch_size, seq_len, _ = input_states.shape
         | 
| 518 | 
            +
                    dtype = input_states.dtype
         | 
| 519 | 
            +
             | 
| 520 | 
            +
                    # 1. Gated MLP's linear projection
         | 
| 521 | 
            +
                    input_states = apply_mask_to_padding_states(input_states, attention_mask)
         | 
| 522 | 
            +
                    projected_states = self.in_proj(input_states)
         | 
| 523 | 
            +
                    d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size-self.num_heads) // 2
         | 
| 524 | 
            +
                    _, _, gate, hidden_states_B_C, dt = projected_states.split(
         | 
| 525 | 
            +
                            [d_mlp, d_mlp, self.intermediate_size,  self.conv_dim, self.num_heads], dim=-1
         | 
| 526 | 
            +
                    )
         | 
| 527 | 
            +
             | 
| 528 | 
            +
                    # 2. Convolution sequence transformation
         | 
| 529 | 
            +
                    if cache_params is not None and cache_position is not None and cache_position[0] > 0:
         | 
| 530 | 
            +
                        cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=hidden_states_B_C, cache_init=False)
         | 
| 531 | 
            +
             | 
| 532 | 
            +
                        # We need to guarantee that anything regarding the cache is on the same device
         | 
| 533 | 
            +
                        conv_states = cache_params.conv_states[self.layer_idx].to(device=self.conv1d.weight.device)
         | 
| 534 | 
            +
             | 
| 535 | 
            +
                        hidden_states_B_C = torch.sum(
         | 
| 536 | 
            +
                            conv_states * self.conv1d.weight.squeeze(1), dim=-1
         | 
| 537 | 
            +
                        )
         | 
| 538 | 
            +
                        if self.use_conv_bias:
         | 
| 539 | 
            +
                            hidden_states_B_C = hidden_states_B_C + self.conv1d.bias
         | 
| 540 | 
            +
                        hidden_states_B_C = self.act(hidden_states_B_C)
         | 
| 541 | 
            +
                    else:
         | 
| 542 | 
            +
                        # Init cache
         | 
| 543 | 
            +
                        if cache_params is not None:
         | 
| 544 | 
            +
                            hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
         | 
| 545 | 
            +
                            conv_states = nn.functional.pad(
         | 
| 546 | 
            +
                                hidden_states_B_C_transposed, (cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0)
         | 
| 547 | 
            +
                            )
         | 
| 548 | 
            +
                            cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True)
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                        hidden_states_B_C = self.act(self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2))
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                    hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
         | 
| 553 | 
            +
                    hidden_states, B, C = torch.split(
         | 
| 554 | 
            +
                        hidden_states_B_C,
         | 
| 555 | 
            +
                        [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size],
         | 
| 556 | 
            +
                        dim=-1
         | 
| 557 | 
            +
                    )
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                    # 3. SSM transformation
         | 
| 560 | 
            +
                    A = -torch.exp(self.A_log.float())                            # [num_heads]
         | 
| 561 | 
            +
                    if cache_params is not None and cache_position is not None and cache_position[0] > 0:
         | 
| 562 | 
            +
                        # We need to guarantee that anything regarding the cache is on the same device
         | 
| 563 | 
            +
                        cache_device = cache_params.ssm_states.device
         | 
| 564 | 
            +
             | 
| 565 | 
            +
                        # Note: there is no need to pad parameter matrices here, as there is just one new token
         | 
| 566 | 
            +
                        # for batched generation
         | 
| 567 | 
            +
                        dt = dt[:, 0, :][:, None, ...]
         | 
| 568 | 
            +
                        dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
         | 
| 569 | 
            +
                        # [num_heads] -> [num_heads, head_dim]
         | 
| 570 | 
            +
                        dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
         | 
| 571 | 
            +
             | 
| 572 | 
            +
                        dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
         | 
| 573 | 
            +
                        dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
         | 
| 574 | 
            +
                        A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
         | 
| 575 | 
            +
                        # [bsz, num_heads, head_dim, state_size]
         | 
| 576 | 
            +
                        dA = (torch.exp(dt[..., None] * A)).to(device=cache_device)
         | 
| 577 | 
            +
             | 
| 578 | 
            +
                        # Discretize B
         | 
| 579 | 
            +
                        # [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
         | 
| 580 | 
            +
                        # -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
         | 
| 581 | 
            +
                        B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
         | 
| 582 | 
            +
                        B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
         | 
| 583 | 
            +
                        B = B.reshape(batch_size, -1, B.shape[-1])
         | 
| 584 | 
            +
                        # [bsz, num_heads, head_dim, state_size]
         | 
| 585 | 
            +
                        dB = dt[..., None] * B[..., None, :]
         | 
| 586 | 
            +
             | 
| 587 | 
            +
                        # Discretize x into dB
         | 
| 588 | 
            +
                        # [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
         | 
| 589 | 
            +
                        hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
         | 
| 590 | 
            +
                        dBx = (dB * hidden_states[..., None]).to(device=cache_device)
         | 
| 591 | 
            +
             | 
| 592 | 
            +
                        # State calculation
         | 
| 593 | 
            +
                        cache_params.update_ssm_state(
         | 
| 594 | 
            +
                            layer_idx=self.layer_idx,
         | 
| 595 | 
            +
                            new_ssm_state=cache_params.ssm_states[self.layer_idx] * dA + dBx
         | 
| 596 | 
            +
                        )
         | 
| 597 | 
            +
             | 
| 598 | 
            +
                        # Subsequent output
         | 
| 599 | 
            +
                        # [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
         | 
| 600 | 
            +
                        C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
         | 
| 601 | 
            +
                        C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
         | 
| 602 | 
            +
                        C = C.reshape(batch_size, -1, C.shape[-1])
         | 
| 603 | 
            +
                        # [bsz, num_heads, head_dim]
         | 
| 604 | 
            +
             | 
| 605 | 
            +
                        ssm_states = cache_params.ssm_states[self.layer_idx].to(device=C.device, dtype=C.dtype)  # Shape: [b, h, d, n]
         | 
| 606 | 
            +
                        # Reshape ssm_states to merge the first two dimensions
         | 
| 607 | 
            +
                        ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size)  # Shape: [b*h, d, n]
         | 
| 608 | 
            +
                        C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1)  # Shape: [b*h, n, 1]
         | 
| 609 | 
            +
                        y = torch.bmm(ssm_states_reshaped, C_reshaped)
         | 
| 610 | 
            +
                        y = y.view(batch_size, self.num_heads, self.head_dim)
         | 
| 611 | 
            +
             | 
| 612 | 
            +
                        # D skip connection
         | 
| 613 | 
            +
                        # [num_heads] -> [num_heads, head_dim]
         | 
| 614 | 
            +
                        D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
         | 
| 615 | 
            +
                        y = (y + hidden_states * D).to(y.dtype)
         | 
| 616 | 
            +
             | 
| 617 | 
            +
                        # [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
         | 
| 618 | 
            +
                        y = y.reshape(batch_size, -1)[:, None, ...]
         | 
| 619 | 
            +
                    else:
         | 
| 620 | 
            +
                        # begin ssd naive implementation without einsums
         | 
| 621 | 
            +
                        dt = nn.functional.softplus(dt + self.dt_bias)
         | 
| 622 | 
            +
                        dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
         | 
| 623 | 
            +
                        hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
         | 
| 624 | 
            +
                        B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
         | 
| 625 | 
            +
                        C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
         | 
| 626 | 
            +
                        B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
         | 
| 627 | 
            +
                        C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
         | 
| 628 | 
            +
                        pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size
         | 
| 629 | 
            +
             | 
| 630 | 
            +
                        D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
         | 
| 631 | 
            +
             | 
| 632 | 
            +
                        # Discretize x and A
         | 
| 633 | 
            +
                        hidden_states = hidden_states * dt[..., None]
         | 
| 634 | 
            +
                        A = A.to(hidden_states.dtype) * dt
         | 
| 635 | 
            +
             | 
| 636 | 
            +
                        # Rearrange into blocks/chunks
         | 
| 637 | 
            +
                        hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
         | 
| 638 | 
            +
             | 
| 639 | 
            +
                        # [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
         | 
| 640 | 
            +
                        A = A.permute(0, 3, 1, 2)
         | 
| 641 | 
            +
                        A_cumsum = torch.cumsum(A, dim=-1)
         | 
| 642 | 
            +
             | 
| 643 | 
            +
                        # 1. Compute the output for each intra-chunk (diagonal blocks)
         | 
| 644 | 
            +
                        # This is the analog of a causal mask
         | 
| 645 | 
            +
                        L = torch.exp(segment_sum(A))
         | 
| 646 | 
            +
             | 
| 647 | 
            +
                        # Contraction of C and B to get G (attention-weights like)
         | 
| 648 | 
            +
                        G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, :, :]  # shape: (b, c, l, s, h, n)
         | 
| 649 | 
            +
                        G = G_intermediate.sum(dim=-1)  # shape: (b, c, l, s, h)
         | 
| 650 | 
            +
             | 
| 651 | 
            +
                        # Compute M, equivalent to applying attention mask to weights
         | 
| 652 | 
            +
                        M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
         | 
| 653 | 
            +
                        M = M_intermediate.sum(dim=-1)
         | 
| 654 | 
            +
             | 
| 655 | 
            +
                        # Compute Y_diag (apply to values)
         | 
| 656 | 
            +
                        Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(dim=3)
         | 
| 657 | 
            +
             | 
| 658 | 
            +
                        # 2. Compute the state for each intra-chunk
         | 
| 659 | 
            +
                        # (right term of low-rank factorization of off-diagonal blocks; B terms)
         | 
| 660 | 
            +
                        decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
         | 
| 661 | 
            +
                        B_decay = B * decay_states.permute(0, -2, -1, 1)[..., None]
         | 
| 662 | 
            +
                        states = (B_decay[..., None, :] * hidden_states[..., None]).sum(dim=2)
         | 
| 663 | 
            +
             | 
| 664 | 
            +
                        # 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
         | 
| 665 | 
            +
                        # (middle term of factorization of off-diag blocks; A terms)
         | 
| 666 | 
            +
                        if cache_params is not None and cache_position is not None and cache_position[0] > 0:
         | 
| 667 | 
            +
                            previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...].to(device=states.device)
         | 
| 668 | 
            +
                        else:
         | 
| 669 | 
            +
                            previous_states = torch.zeros_like(states[:, :1])
         | 
| 670 | 
            +
                        states = torch.cat([previous_states, states], dim=1)
         | 
| 671 | 
            +
                        decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
         | 
| 672 | 
            +
                        decay_chunk = decay_chunk.transpose(1, 3)
         | 
| 673 | 
            +
                        new_states = (decay_chunk[..., None, None] * states[:, :, None, ...]).sum(dim=1)
         | 
| 674 | 
            +
                        states, ssm_state = new_states[:, :-1], new_states[:, -1]
         | 
| 675 | 
            +
             | 
| 676 | 
            +
                        # 4. Compute state -> output conversion per chunk
         | 
| 677 | 
            +
                        # (left term of low-rank factorization of off-diagonal blocks; C terms)
         | 
| 678 | 
            +
                        state_decay_out = torch.exp(A_cumsum)
         | 
| 679 | 
            +
                        C_times_states = (C[..., None, :] * states[:, :, None, ...])
         | 
| 680 | 
            +
                        state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
         | 
| 681 | 
            +
                        Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
         | 
| 682 | 
            +
             | 
| 683 | 
            +
                        # Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
         | 
| 684 | 
            +
                        y = Y_diag + Y_off
         | 
| 685 | 
            +
                        # [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
         | 
| 686 | 
            +
                        y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
         | 
| 687 | 
            +
             | 
| 688 | 
            +
                        y = y + D_residual
         | 
| 689 | 
            +
                        # Cutting off padded chunks
         | 
| 690 | 
            +
                        if pad_size > 0:
         | 
| 691 | 
            +
                            y = y[:, :seq_len, :, :]
         | 
| 692 | 
            +
                        y = y.reshape(batch_size, seq_len, -1)
         | 
| 693 | 
            +
             | 
| 694 | 
            +
                        # Init cache
         | 
| 695 | 
            +
                        if ssm_state is not None and cache_params is not None:
         | 
| 696 | 
            +
                            cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state)
         | 
| 697 | 
            +
             | 
| 698 | 
            +
                    scan_output = self.norm(y, gate)
         | 
| 699 | 
            +
             | 
| 700 | 
            +
                    # end ssd naive
         | 
| 701 | 
            +
             | 
| 702 | 
            +
                    # 4. Final linear projection
         | 
| 703 | 
            +
                    contextualized_states = self.out_proj(scan_output.to(dtype))  # [batch, seq_len, hidden_size]
         | 
| 704 | 
            +
                    return contextualized_states
         | 
| 705 | 
            +
                # fmt: on
         | 
| 706 | 
            +
             | 
| 707 | 
            +
                def forward(
         | 
| 708 | 
            +
                    self,
         | 
| 709 | 
            +
                    hidden_states,
         | 
| 710 | 
            +
                    cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
         | 
| 711 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 712 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 713 | 
            +
                ):
         | 
| 714 | 
            +
                    if is_fast_path_available and "cuda" in self.in_proj.weight.device.type:
         | 
| 715 | 
            +
                        return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask)
         | 
| 716 | 
            +
                    dtype = hidden_states.dtype
         | 
| 717 | 
            +
                    if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
         | 
| 718 | 
            +
                        # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
         | 
| 719 | 
            +
                        hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
         | 
| 720 | 
            +
             | 
| 721 | 
            +
                    return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask)
         | 
| 722 | 
            +
             | 
| 723 | 
            +
             | 
| 724 | 
            +
            class NemotronHRMSNorm(nn.Module):
         | 
| 725 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 726 | 
            +
                    """
         | 
| 727 | 
            +
                    NemotronHRMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
         | 
| 728 | 
            +
                    """
         | 
| 729 | 
            +
                    super().__init__()
         | 
| 730 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 731 | 
            +
                    self.variance_epsilon = eps
         | 
| 732 | 
            +
             | 
| 733 | 
            +
                def forward(self, hidden_states):
         | 
| 734 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 735 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 736 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 737 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 738 | 
            +
                    # Weights are in float32
         | 
| 739 | 
            +
                    return (self.weight.to(torch.float32) * hidden_states).to(input_dtype)
         | 
| 740 | 
            +
             | 
| 741 | 
            +
            class NemotronHBlock(nn.Module):
         | 
| 742 | 
            +
                def __init__(self, config, layer_idx):
         | 
| 743 | 
            +
                    super().__init__()
         | 
| 744 | 
            +
                    self.config = config
         | 
| 745 | 
            +
                    self.layer_idx = layer_idx
         | 
| 746 | 
            +
                    self.residual_in_fp32 = config.residual_in_fp32
         | 
| 747 | 
            +
                    self.norm = NemotronHRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
         | 
| 748 | 
            +
             | 
| 749 | 
            +
                    # M: Mamba2, *: Attention, -: MLP
         | 
| 750 | 
            +
                    self.block_type = config.layers_block_type[layer_idx]
         | 
| 751 | 
            +
                    if self.block_type == "mamba":
         | 
| 752 | 
            +
                        self.mixer = NemotronHMamba2Mixer(config, layer_idx=layer_idx)
         | 
| 753 | 
            +
                    elif self.block_type == "attention":
         | 
| 754 | 
            +
                        self.mixer = NEMOTRONH_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
         | 
| 755 | 
            +
                    elif self.block_type == "mlp":
         | 
| 756 | 
            +
                        self.mixer = NemotronHMLP(config, layer_idx=layer_idx)
         | 
| 757 | 
            +
                    else:
         | 
| 758 | 
            +
                        raise ValueError(f"Invalid layer pattern {config.hybrid_override_pattern[layer_idx]}")
         | 
| 759 | 
            +
             | 
| 760 | 
            +
                def forward(
         | 
| 761 | 
            +
                    self,
         | 
| 762 | 
            +
                    hidden_states,
         | 
| 763 | 
            +
                    cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
         | 
| 764 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 765 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 766 | 
            +
                ):
         | 
| 767 | 
            +
                    with torch.cuda.stream(torch.cuda.default_stream(hidden_states.device)):
         | 
| 768 | 
            +
                        # * Use torch.cuda.stream() to avoid NaN issues when using multiple GPUs
         | 
| 769 | 
            +
                        residual = hidden_states
         | 
| 770 | 
            +
                        hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
         | 
| 771 | 
            +
                        if self.residual_in_fp32:
         | 
| 772 | 
            +
                            residual = residual.to(torch.float32)
         | 
| 773 | 
            +
             | 
| 774 | 
            +
                        if self.block_type == "mamba":
         | 
| 775 | 
            +
                            hidden_states = self.mixer(
         | 
| 776 | 
            +
                                hidden_states, cache_params=cache_params, cache_position=cache_position
         | 
| 777 | 
            +
                            )
         | 
| 778 | 
            +
                        elif self.block_type == "attention":
         | 
| 779 | 
            +
                            hidden_states = self.mixer(
         | 
| 780 | 
            +
                                hidden_states, cache_position=cache_position
         | 
| 781 | 
            +
                            )
         | 
| 782 | 
            +
                            hidden_states = hidden_states[0]
         | 
| 783 | 
            +
                        elif self.block_type == "mlp":
         | 
| 784 | 
            +
                            hidden_states = self.mixer(
         | 
| 785 | 
            +
                                hidden_states
         | 
| 786 | 
            +
                            )
         | 
| 787 | 
            +
                        else:
         | 
| 788 | 
            +
                            raise ValueError(f"Invalid block_type: {self.block_type}")
         | 
| 789 | 
            +
             | 
| 790 | 
            +
                        hidden_states = residual + hidden_states
         | 
| 791 | 
            +
                        return hidden_states
         | 
| 792 | 
            +
             | 
| 793 | 
            +
             | 
| 794 | 
            +
            # Copied from transformers.models.nemotron.modeling_nemotron Nemotron->NemotronH
         | 
| 795 | 
            +
            class NemotronHMLP(nn.Module):
         | 
| 796 | 
            +
                def __init__(self, config, layer_idx: Optional[int] = None):
         | 
| 797 | 
            +
                    super().__init__()
         | 
| 798 | 
            +
                    self.config = config
         | 
| 799 | 
            +
                    self.layer_idx = layer_idx
         | 
| 800 | 
            +
                    if layer_idx is None:
         | 
| 801 | 
            +
                        logger.warning_once(
         | 
| 802 | 
            +
                            f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
         | 
| 803 | 
            +
                            "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
         | 
| 804 | 
            +
                            "when creating this class."
         | 
| 805 | 
            +
                        )
         | 
| 806 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 807 | 
            +
                    self.intermediate_size = config.intermediate_size
         | 
| 808 | 
            +
                    self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
         | 
| 809 | 
            +
                    self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
         | 
| 810 | 
            +
                    self.act_fn = ACT2FN[config.mlp_hidden_act]
         | 
| 811 | 
            +
             | 
| 812 | 
            +
                def forward(self, x):
         | 
| 813 | 
            +
                    return self.down_proj(self.act_fn(self.up_proj(x)))
         | 
| 814 | 
            +
             | 
| 815 | 
            +
             | 
| 816 | 
            +
            # Copied from transformers.models.llama.modeling_llama.repeat_kv
         | 
| 817 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 818 | 
            +
                """
         | 
| 819 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 820 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 821 | 
            +
                """
         | 
| 822 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 823 | 
            +
                if n_rep == 1:
         | 
| 824 | 
            +
                    return hidden_states
         | 
| 825 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         | 
| 826 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 827 | 
            +
             | 
| 828 | 
            +
             | 
| 829 | 
            +
            class NemotronHAttention(nn.Module):
         | 
| 830 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 831 | 
            +
             | 
| 832 | 
            +
                def __init__(self, config: NemotronHConfig, layer_idx: Optional[int] = None):
         | 
| 833 | 
            +
                    super().__init__()
         | 
| 834 | 
            +
                    self.config = config
         | 
| 835 | 
            +
                    self.layer_idx = layer_idx
         | 
| 836 | 
            +
                    if layer_idx is None:
         | 
| 837 | 
            +
                        logger.warning_once(
         | 
| 838 | 
            +
                            f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
         | 
| 839 | 
            +
                            "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
         | 
| 840 | 
            +
                            "when creating this class."
         | 
| 841 | 
            +
                        )
         | 
| 842 | 
            +
             | 
| 843 | 
            +
                    self.attention_dropout = config.attention_dropout
         | 
| 844 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 845 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 846 | 
            +
                    if config.attention_head_dim is not None:
         | 
| 847 | 
            +
                        self.head_dim = config.attention_head_dim
         | 
| 848 | 
            +
                    else:
         | 
| 849 | 
            +
                        self.head_dim = config.hidden_size // config.num_attention_heads
         | 
| 850 | 
            +
                    self.num_key_value_heads = config.num_key_value_heads
         | 
| 851 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 852 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 853 | 
            +
                    self.is_causal = True
         | 
| 854 | 
            +
             | 
| 855 | 
            +
                    self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
         | 
| 856 | 
            +
                    self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
         | 
| 857 | 
            +
                    self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
         | 
| 858 | 
            +
                    self.o_proj = nn.Linear(self.head_dim * self.num_heads, self.hidden_size, bias=config.attention_bias)
         | 
| 859 | 
            +
             | 
| 860 | 
            +
                def forward(
         | 
| 861 | 
            +
                    self,
         | 
| 862 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 863 | 
            +
                    # position_embeddings: Tuple[torch.Tensor, torch.Tensor], #TODO
         | 
| 864 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 865 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 866 | 
            +
                    past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
         | 
| 867 | 
            +
                    output_attentions: bool = False,
         | 
| 868 | 
            +
                    use_cache: bool = False,
         | 
| 869 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 870 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 871 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 872 | 
            +
             | 
| 873 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 874 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 875 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 876 | 
            +
             | 
| 877 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 878 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 879 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 880 | 
            +
             | 
| 881 | 
            +
                    if past_key_value is not None:
         | 
| 882 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
         | 
| 883 | 
            +
             | 
| 884 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 885 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 886 | 
            +
             | 
| 887 | 
            +
                    causal_mask = attention_mask
         | 
| 888 | 
            +
                    if attention_mask is not None:  # no matter the length, we just slice it
         | 
| 889 | 
            +
                        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
         | 
| 890 | 
            +
             | 
| 891 | 
            +
                    if query_states.device.type == "cuda" and attention_mask is not None:
         | 
| 892 | 
            +
                        query_states = query_states.contiguous()
         | 
| 893 | 
            +
                        key_states = key_states.contiguous()
         | 
| 894 | 
            +
                        value_states = value_states.contiguous()
         | 
| 895 | 
            +
             | 
| 896 | 
            +
                    is_causal = True if causal_mask is None and q_len > 1 else False
         | 
| 897 | 
            +
             | 
| 898 | 
            +
                    attn_output = torch.nn.functional.scaled_dot_product_attention(
         | 
| 899 | 
            +
                        query_states,
         | 
| 900 | 
            +
                        key_states,
         | 
| 901 | 
            +
                        value_states,
         | 
| 902 | 
            +
                        attn_mask=causal_mask,
         | 
| 903 | 
            +
                        dropout_p=self.attention_dropout if self.training else 0.0,
         | 
| 904 | 
            +
                        is_causal=is_causal,
         | 
| 905 | 
            +
                    )
         | 
| 906 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 907 | 
            +
                    #attn_output = attn_output.view(bsz, q_len, self.hidden_size)
         | 
| 908 | 
            +
                    attn_output = attn_output.view(bsz, q_len, self.num_heads * self.head_dim)
         | 
| 909 | 
            +
             | 
| 910 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 911 | 
            +
             | 
| 912 | 
            +
                    return attn_output, None, past_key_value
         | 
| 913 | 
            +
             | 
| 914 | 
            +
             | 
| 915 | 
            +
            # Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Jamba
         | 
| 916 | 
            +
            #class JambaFlashAttention2(JambaAttention):
         | 
| 917 | 
            +
            class NemotronHFlashAttention2(NemotronHAttention):
         | 
| 918 | 
            +
                """
         | 
| 919 | 
            +
                Jamba flash attention module. This module inherits from `JambaAttention` as the weights of the module stays
         | 
| 920 | 
            +
                untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
         | 
| 921 | 
            +
                flash attention and deal with padding tokens in case the input contains any of them.
         | 
| 922 | 
            +
                """
         | 
| 923 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 924 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 925 | 
            +
             | 
| 926 | 
            +
                    # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
         | 
| 927 | 
            +
                    # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
         | 
| 928 | 
            +
                    # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
         | 
| 929 | 
            +
                    self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
         | 
| 930 | 
            +
             | 
| 931 | 
            +
                def forward(
         | 
| 932 | 
            +
                    self,
         | 
| 933 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 934 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 935 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 936 | 
            +
                    past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
         | 
| 937 | 
            +
                    output_attentions: bool = False,
         | 
| 938 | 
            +
                    use_cache: bool = False,
         | 
| 939 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 940 | 
            +
                    **kwargs,
         | 
| 941 | 
            +
                ):
         | 
| 942 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 943 | 
            +
             | 
| 944 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 945 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 946 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 947 | 
            +
             | 
| 948 | 
            +
                    # Flash attention requires the input to have the shape
         | 
| 949 | 
            +
                    # batch_size x seq_length x head_dim x hidden_dim
         | 
| 950 | 
            +
                    # therefore we just need to keep the original shape
         | 
| 951 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
         | 
| 952 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 953 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 954 | 
            +
             | 
| 955 | 
            +
                    if past_key_value is not None:
         | 
| 956 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
         | 
| 957 | 
            +
             | 
| 958 | 
            +
                    # repeat k/v heads if n_kv_heads < n_heads
         | 
| 959 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 960 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 961 | 
            +
                    dropout_rate = 0.0 if not self.training else self.attention_dropout
         | 
| 962 | 
            +
             | 
| 963 | 
            +
                    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
         | 
| 964 | 
            +
                    # therefore the input hidden states gets silently casted in float32. Hence, we need
         | 
| 965 | 
            +
                    # cast them back in float16 just to be sure everything works as expected.
         | 
| 966 | 
            +
                    input_dtype = query_states.dtype
         | 
| 967 | 
            +
                    if input_dtype == torch.float32:
         | 
| 968 | 
            +
                        if torch.is_autocast_enabled():
         | 
| 969 | 
            +
                            target_dtype = torch.get_autocast_gpu_dtype()
         | 
| 970 | 
            +
                        # Handle the case where the model is quantized
         | 
| 971 | 
            +
                        elif hasattr(self.config, "_pre_quantization_dtype"):
         | 
| 972 | 
            +
                            target_dtype = self.config._pre_quantization_dtype
         | 
| 973 | 
            +
                        else:
         | 
| 974 | 
            +
                            target_dtype = self.q_proj.weight.dtype
         | 
| 975 | 
            +
             | 
| 976 | 
            +
                        logger.warning_once(
         | 
| 977 | 
            +
                            f"The input hidden states seems to be silently casted in float32, this might be related to"
         | 
| 978 | 
            +
                            f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
         | 
| 979 | 
            +
                            f" {target_dtype}."
         | 
| 980 | 
            +
                        )
         | 
| 981 | 
            +
             | 
| 982 | 
            +
                        query_states = query_states.to(target_dtype)
         | 
| 983 | 
            +
                        key_states = key_states.to(target_dtype)
         | 
| 984 | 
            +
                        value_states = value_states.to(target_dtype)
         | 
| 985 | 
            +
             | 
| 986 | 
            +
                    # Reashape to the expected shape for Flash Attention
         | 
| 987 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 988 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 989 | 
            +
             | 
| 990 | 
            +
                    attn_output = _flash_attention_forward(
         | 
| 991 | 
            +
                        query_states,
         | 
| 992 | 
            +
                        key_states,
         | 
| 993 | 
            +
                        value_states,
         | 
| 994 | 
            +
                        attention_mask,
         | 
| 995 | 
            +
                        q_len,
         | 
| 996 | 
            +
                        dropout=dropout_rate,
         | 
| 997 | 
            +
                        sliding_window=getattr(self.config, "sliding_window", None),
         | 
| 998 | 
            +
                        is_causal=self.is_causal,
         | 
| 999 | 
            +
                        use_top_left_mask=self._flash_attn_uses_top_left_mask,
         | 
| 1000 | 
            +
                    )
         | 
| 1001 | 
            +
             | 
| 1002 | 
            +
                    #attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
         | 
| 1003 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim).contiguous()
         | 
| 1004 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 1005 | 
            +
             | 
| 1006 | 
            +
                    if not output_attentions:
         | 
| 1007 | 
            +
                        attn_weights = None
         | 
| 1008 | 
            +
             | 
| 1009 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 1010 | 
            +
             | 
| 1011 | 
            +
             | 
| 1012 | 
            +
            # Adapted from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Jamba
         | 
| 1013 | 
            +
            #class JambaSdpaAttention(JambaAttention):
         | 
| 1014 | 
            +
            class NemotronHSdpaAttention(NemotronHAttention):
         | 
| 1015 | 
            +
                """
         | 
| 1016 | 
            +
                Jamba attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
         | 
| 1017 | 
            +
                `JambaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
         | 
| 1018 | 
            +
                SDPA API.
         | 
| 1019 | 
            +
                """
         | 
| 1020 | 
            +
             | 
| 1021 | 
            +
                # Adapted from NemotronHAttention.forward
         | 
| 1022 | 
            +
                def forward(
         | 
| 1023 | 
            +
                    self,
         | 
| 1024 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 1025 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1026 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1027 | 
            +
                    past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
         | 
| 1028 | 
            +
                    output_attentions: bool = False,
         | 
| 1029 | 
            +
                    use_cache: bool = False,
         | 
| 1030 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 1031 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 1032 | 
            +
                    if output_attentions:
         | 
| 1033 | 
            +
                        # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
         | 
| 1034 | 
            +
                        logger.warning_once(
         | 
| 1035 | 
            +
                            "NemotronHModel is using NemotronHSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
         | 
| 1036 | 
            +
                            'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
         | 
| 1037 | 
            +
                        )
         | 
| 1038 | 
            +
                        return super().forward(
         | 
| 1039 | 
            +
                            hidden_states=hidden_states,
         | 
| 1040 | 
            +
                            attention_mask=attention_mask,
         | 
| 1041 | 
            +
                            position_ids=position_ids,
         | 
| 1042 | 
            +
                            past_key_value=past_key_value,
         | 
| 1043 | 
            +
                            output_attentions=output_attentions,
         | 
| 1044 | 
            +
                            use_cache=use_cache,
         | 
| 1045 | 
            +
                        )
         | 
| 1046 | 
            +
             | 
| 1047 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 1048 | 
            +
             | 
| 1049 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 1050 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 1051 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 1052 | 
            +
             | 
| 1053 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 1054 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 1055 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 1056 | 
            +
             | 
| 1057 | 
            +
                    if past_key_value is not None:
         | 
| 1058 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
         | 
| 1059 | 
            +
             | 
| 1060 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 1061 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 1062 | 
            +
             | 
| 1063 | 
            +
                    causal_mask = attention_mask
         | 
| 1064 | 
            +
                    if attention_mask is not None:
         | 
| 1065 | 
            +
                        causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
         | 
| 1066 | 
            +
             | 
| 1067 | 
            +
                    # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
         | 
| 1068 | 
            +
                    # Reference: https://github.com/pytorch/pytorch/issues/112577.
         | 
| 1069 | 
            +
                    if query_states.device.type == "cuda" and attention_mask is not None:
         | 
| 1070 | 
            +
                        query_states = query_states.contiguous()
         | 
| 1071 | 
            +
                        key_states = key_states.contiguous()
         | 
| 1072 | 
            +
                        value_states = value_states.contiguous()
         | 
| 1073 | 
            +
             | 
| 1074 | 
            +
                    # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
         | 
| 1075 | 
            +
                    # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
         | 
| 1076 | 
            +
                    # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
         | 
| 1077 | 
            +
                    is_causal = True if self.is_causal and causal_mask is None and q_len > 1 else False
         | 
| 1078 | 
            +
             | 
| 1079 | 
            +
                    attn_output = torch.nn.functional.scaled_dot_product_attention(
         | 
| 1080 | 
            +
                        query_states,
         | 
| 1081 | 
            +
                        key_states,
         | 
| 1082 | 
            +
                        value_states,
         | 
| 1083 | 
            +
                        attn_mask=causal_mask,
         | 
| 1084 | 
            +
                        dropout_p=self.attention_dropout if self.training else 0.0,
         | 
| 1085 | 
            +
                        is_causal=is_causal,
         | 
| 1086 | 
            +
                    )
         | 
| 1087 | 
            +
             | 
| 1088 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 1089 | 
            +
                    attn_output = attn_output.view(bsz, q_len, self.hidden_size)
         | 
| 1090 | 
            +
             | 
| 1091 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 1092 | 
            +
             | 
| 1093 | 
            +
                    return attn_output, None, past_key_value
         | 
| 1094 | 
            +
             | 
| 1095 | 
            +
             | 
| 1096 | 
            +
            NEMOTRONH_ATTENTION_CLASSES = {
         | 
| 1097 | 
            +
                "eager": NemotronHAttention,
         | 
| 1098 | 
            +
                "flash_attention_2": NemotronHFlashAttention2,
         | 
| 1099 | 
            +
                "sdpa": NemotronHSdpaAttention,
         | 
| 1100 | 
            +
            }
         | 
| 1101 | 
            +
             | 
| 1102 | 
            +
            # Copied from transformers.models.mamba.modeling_mamba2.Mamba2PreTrainedModel
         | 
| 1103 | 
            +
            class NemotronHPreTrainedModel(PreTrainedModel):
         | 
| 1104 | 
            +
                """
         | 
| 1105 | 
            +
                An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
         | 
| 1106 | 
            +
                models.
         | 
| 1107 | 
            +
                """
         | 
| 1108 | 
            +
             | 
| 1109 | 
            +
                config_class = NemotronHConfig
         | 
| 1110 | 
            +
                base_model_prefix = "backbone"
         | 
| 1111 | 
            +
                _no_split_modules = ["NemotronHBlock"]
         | 
| 1112 | 
            +
                supports_gradient_checkpointing = True
         | 
| 1113 | 
            +
                _is_stateful = True
         | 
| 1114 | 
            +
             | 
| 1115 | 
            +
                def _init_weights(self, module):
         | 
| 1116 | 
            +
                    """Initialize the weights."""
         | 
| 1117 | 
            +
                    if isinstance(module, NemotronHMamba2Mixer):
         | 
| 1118 | 
            +
                        module.A_log._no_weight_decay = True
         | 
| 1119 | 
            +
                        module.D._no_weight_decay = True
         | 
| 1120 | 
            +
             | 
| 1121 | 
            +
                        dt = torch.exp(
         | 
| 1122 | 
            +
                            torch.rand(self.config.mamba_num_heads)
         | 
| 1123 | 
            +
                            * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
         | 
| 1124 | 
            +
                            + math.log(self.config.time_step_min)
         | 
| 1125 | 
            +
                        ).clamp(min=self.config.time_step_floor)
         | 
| 1126 | 
            +
             | 
| 1127 | 
            +
                        # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
         | 
| 1128 | 
            +
                        inv_dt = dt + torch.log(-torch.expm1(-dt))
         | 
| 1129 | 
            +
                        with torch.no_grad():
         | 
| 1130 | 
            +
                            module.dt_bias.copy_(inv_dt)
         | 
| 1131 | 
            +
                        module.dt_bias._no_reinit = True
         | 
| 1132 | 
            +
             | 
| 1133 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 1134 | 
            +
                        if module.bias is not None:
         | 
| 1135 | 
            +
                            if not getattr(module.bias, "_no_reinit", False):
         | 
| 1136 | 
            +
                                nn.init.zeros_(module.bias)
         | 
| 1137 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 1138 | 
            +
                        nn.init.normal_(module.weight, std=self.config.initializer_range)
         | 
| 1139 | 
            +
             | 
| 1140 | 
            +
                    # TODO: Check
         | 
| 1141 | 
            +
                    if self.config.rescale_prenorm_residual:
         | 
| 1142 | 
            +
                        # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
         | 
| 1143 | 
            +
                        #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
         | 
| 1144 | 
            +
                        #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
         | 
| 1145 | 
            +
                        #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
         | 
| 1146 | 
            +
                        #
         | 
| 1147 | 
            +
                        # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
         | 
| 1148 | 
            +
                        for name, p in module.named_parameters():
         | 
| 1149 | 
            +
                            if name in ["out_proj.weight"]:
         | 
| 1150 | 
            +
                                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
         | 
| 1151 | 
            +
                                # Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
         | 
| 1152 | 
            +
                                # We need to reinit p since this code could be called multiple times
         | 
| 1153 | 
            +
                                # Having just p *= scale would repeatedly scale it down
         | 
| 1154 | 
            +
                                nn.init.kaiming_uniform_(p, a=math.sqrt(5))
         | 
| 1155 | 
            +
                                with torch.no_grad():
         | 
| 1156 | 
            +
                                    p /= math.sqrt(self.config.num_hidden_layers)
         | 
| 1157 | 
            +
             | 
| 1158 | 
            +
             | 
| 1159 | 
            +
            @dataclass
         | 
| 1160 | 
            +
            # Copied from transformers.models.mamba.modeling_mamba2.Mamba2Output with MAMBA2->NemotronH,Mamba2->NemotronH
         | 
| 1161 | 
            +
            class NemotronHOutput(ModelOutput):
         | 
| 1162 | 
            +
                """
         | 
| 1163 | 
            +
                Class for the NemotronH model outputs.
         | 
| 1164 | 
            +
             | 
| 1165 | 
            +
                Args:
         | 
| 1166 | 
            +
                    last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
         | 
| 1167 | 
            +
                        Sequence of hidden-states at the output of the last layer of the model.
         | 
| 1168 | 
            +
                    cache_params (`HybridMambaAttentionDynamicCache`):
         | 
| 1169 | 
            +
                        The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
         | 
| 1170 | 
            +
                        avoid providing the old `input_ids`.
         | 
| 1171 | 
            +
             | 
| 1172 | 
            +
                        Includes both the State space model state matrices after the selective scan, and the Convolutional states
         | 
| 1173 | 
            +
                    hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
         | 
| 1174 | 
            +
                        Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
         | 
| 1175 | 
            +
                        one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
         | 
| 1176 | 
            +
             | 
| 1177 | 
            +
                        Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
         | 
| 1178 | 
            +
                """
         | 
| 1179 | 
            +
             | 
| 1180 | 
            +
                last_hidden_state: Optional[torch.FloatTensor] = None
         | 
| 1181 | 
            +
                cache_params: Optional[HybridMambaAttentionDynamicCache] = None
         | 
| 1182 | 
            +
                hidden_states: Optional[Tuple[torch.FloatTensor]] = None
         | 
| 1183 | 
            +
                attentions: Optional[Tuple[torch.FloatTensor]] = None
         | 
| 1184 | 
            +
             | 
| 1185 | 
            +
             | 
| 1186 | 
            +
            @dataclass
         | 
| 1187 | 
            +
            # Copied from transformers.models.mamba2.modeling_mamba2.MambaCausalLMOutput with Mamba2->NemotronH
         | 
| 1188 | 
            +
            class NemotronHCausalLMOutput(ModelOutput):
         | 
| 1189 | 
            +
                """
         | 
| 1190 | 
            +
                Base class for causal language model (or autoregressive) outputs.
         | 
| 1191 | 
            +
             | 
| 1192 | 
            +
                Args:
         | 
| 1193 | 
            +
                    loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
         | 
| 1194 | 
            +
                        Language modeling loss (for next-token prediction).
         | 
| 1195 | 
            +
                    logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
         | 
| 1196 | 
            +
                        Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
         | 
| 1197 | 
            +
                    cache_params (`HybridMambaAttentionDynamicCache`):
         | 
| 1198 | 
            +
                        The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
         | 
| 1199 | 
            +
                        avoid providing the old `input_ids`.
         | 
| 1200 | 
            +
             | 
| 1201 | 
            +
                        Includes both the State space model state matrices after the selective scan, and the Convolutional states
         | 
| 1202 | 
            +
                    hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
         | 
| 1203 | 
            +
                        Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
         | 
| 1204 | 
            +
                        one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
         | 
| 1205 | 
            +
             | 
| 1206 | 
            +
                        Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
         | 
| 1207 | 
            +
                """
         | 
| 1208 | 
            +
             | 
| 1209 | 
            +
                loss: Optional[torch.FloatTensor] = None
         | 
| 1210 | 
            +
                logits: Optional[torch.FloatTensor] = None
         | 
| 1211 | 
            +
                cache_params: Optional[HybridMambaAttentionDynamicCache] = None
         | 
| 1212 | 
            +
                hidden_states: Optional[Tuple[torch.FloatTensor]] = None
         | 
| 1213 | 
            +
                attentions: Optional[Tuple[torch.FloatTensor]] = None
         | 
| 1214 | 
            +
             | 
| 1215 | 
            +
             | 
| 1216 | 
            +
            NEMOTRONH_START_DOCSTRING = r"""
         | 
| 1217 | 
            +
             | 
| 1218 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 1219 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 1220 | 
            +
                etc.)
         | 
| 1221 | 
            +
             | 
| 1222 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 1223 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 1224 | 
            +
                and behavior.
         | 
| 1225 | 
            +
             | 
| 1226 | 
            +
                Parameters:
         | 
| 1227 | 
            +
                    config ([`NemotronHConfig`]): Model configuration class with all the parameters of the model.
         | 
| 1228 | 
            +
                        Initializing with a config file does not load the weights associated with the model, only the
         | 
| 1229 | 
            +
                        configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 1230 | 
            +
            """
         | 
| 1231 | 
            +
             | 
| 1232 | 
            +
            NEMOTRONH_INPUTS_DOCSTRING = r"""
         | 
| 1233 | 
            +
                Args:
         | 
| 1234 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
         | 
| 1235 | 
            +
                        Indices of input sequence tokens in the vocabulary.
         | 
| 1236 | 
            +
             | 
| 1237 | 
            +
                        If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as
         | 
| 1238 | 
            +
                        `input_ids`.
         | 
| 1239 | 
            +
             | 
| 1240 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 1241 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 1242 | 
            +
             | 
| 1243 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 1244 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 1245 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 1246 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 1247 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 1248 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1249 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings.
         | 
| 1250 | 
            +
                    cache_params (`HybridMambaAttentionDynamicCache`, *optional*):
         | 
| 1251 | 
            +
                        If passed along, the model uses the previous state in all the blocks (which will give the output for the
         | 
| 1252 | 
            +
                        `input_ids` provided as if the model add `state_input_ids + input_ids` as context).
         | 
| 1253 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 1254 | 
            +
                        If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits.
         | 
| 1255 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 1256 | 
            +
                        Whether or not to return the attentions tensors of all attention layers.
         | 
| 1257 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 1258 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 1259 | 
            +
                        more detail.
         | 
| 1260 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 1261 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 1262 | 
            +
                    cache_position (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1263 | 
            +
                        The position of the current input in the cache. This is used to ensure that the cache is correctly updated.
         | 
| 1264 | 
            +
                        If `cache_params` is passed, `cache_position` should also be passed.
         | 
| 1265 | 
            +
                    attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1266 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 1267 | 
            +
             | 
| 1268 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 1269 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 1270 | 
            +
             | 
| 1271 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 1272 | 
            +
            """
         | 
| 1273 | 
            +
             | 
| 1274 | 
            +
             | 
| 1275 | 
            +
            @add_start_docstrings(
         | 
| 1276 | 
            +
                "The bare NemotronH Model transformer outputting raw hidden-states without any specific head on top.",
         | 
| 1277 | 
            +
                NEMOTRONH_START_DOCSTRING,
         | 
| 1278 | 
            +
            )
         | 
| 1279 | 
            +
            class NemotronHModel(NemotronHPreTrainedModel):
         | 
| 1280 | 
            +
                def __init__(self, config):
         | 
| 1281 | 
            +
                    super().__init__(config)
         | 
| 1282 | 
            +
             | 
| 1283 | 
            +
                    self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
         | 
| 1284 | 
            +
                    self.layers = nn.ModuleList([NemotronHBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
         | 
| 1285 | 
            +
             | 
| 1286 | 
            +
                    self.gradient_checkpointing = False
         | 
| 1287 | 
            +
                    self.norm_f = NemotronHRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
         | 
| 1288 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1289 | 
            +
                    self._register_load_state_dict_pre_hook(self.load_hook)
         | 
| 1290 | 
            +
                    self.post_init()
         | 
| 1291 | 
            +
             | 
| 1292 | 
            +
                def load_hook(self, state_dict, prefix, *args):
         | 
| 1293 | 
            +
                    for k in state_dict:
         | 
| 1294 | 
            +
                        if "embedding." in k:
         | 
| 1295 | 
            +
                            state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
         | 
| 1296 | 
            +
                            break
         | 
| 1297 | 
            +
             | 
| 1298 | 
            +
                def get_input_embeddings(self):
         | 
| 1299 | 
            +
                    return self.embeddings
         | 
| 1300 | 
            +
             | 
| 1301 | 
            +
                def set_input_embeddings(self, new_embeddings):
         | 
| 1302 | 
            +
                    self.embeddings = new_embeddings
         | 
| 1303 | 
            +
             | 
| 1304 | 
            +
                @add_start_docstrings_to_model_forward(NEMOTRONH_INPUTS_DOCSTRING)
         | 
| 1305 | 
            +
                @add_code_sample_docstrings(
         | 
| 1306 | 
            +
                    checkpoint=_CHECKPOINT_FOR_DOC,
         | 
| 1307 | 
            +
                    output_type=NemotronHOutput,
         | 
| 1308 | 
            +
                    config_class=_CONFIG_FOR_DOC,
         | 
| 1309 | 
            +
                )
         | 
| 1310 | 
            +
                def forward(
         | 
| 1311 | 
            +
                    self,
         | 
| 1312 | 
            +
                    input_ids: Optional[torch.LongTensor] = None,
         | 
| 1313 | 
            +
                    inputs_embeds: Optional[torch.LongTensor] = None,
         | 
| 1314 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1315 | 
            +
                    cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
         | 
| 1316 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1317 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1318 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1319 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1320 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 1321 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1322 | 
            +
                    **kwargs,
         | 
| 1323 | 
            +
                ) -> Union[Tuple, NemotronHOutput]:
         | 
| 1324 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1325 | 
            +
                    output_hidden_states = (
         | 
| 1326 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1327 | 
            +
                    )
         | 
| 1328 | 
            +
                    # use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 1329 | 
            +
                    use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
         | 
| 1330 | 
            +
             | 
| 1331 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1332 | 
            +
             | 
| 1333 | 
            +
                    if (input_ids is None) ^ (inputs_embeds is not None):  # ^ is python for xor
         | 
| 1334 | 
            +
                        raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
         | 
| 1335 | 
            +
             | 
| 1336 | 
            +
                    if inputs_embeds is None:
         | 
| 1337 | 
            +
                        inputs_embeds = self.embeddings(input_ids)
         | 
| 1338 | 
            +
             | 
| 1339 | 
            +
                    if self.gradient_checkpointing and self.training and use_cache:
         | 
| 1340 | 
            +
                        logger.warning_once(
         | 
| 1341 | 
            +
                            "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
         | 
| 1342 | 
            +
                        )
         | 
| 1343 | 
            +
                        use_cache = False
         | 
| 1344 | 
            +
             | 
| 1345 | 
            +
                    # From zamba_modeling.py
         | 
| 1346 | 
            +
                    if use_cache and cache_params is None:
         | 
| 1347 | 
            +
                        logger.warning_once(
         | 
| 1348 | 
            +
                            "NemotronH requires an initialized `NemotronHHybridDynamicCache` to return a cache. None was "
         | 
| 1349 | 
            +
                            "provided, so no cache will be returned."
         | 
| 1350 | 
            +
                        )
         | 
| 1351 | 
            +
             | 
| 1352 | 
            +
                    hidden_states = inputs_embeds
         | 
| 1353 | 
            +
             | 
| 1354 | 
            +
                    if cache_position is None:
         | 
| 1355 | 
            +
                        cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
         | 
| 1356 | 
            +
                    if position_ids is None:
         | 
| 1357 | 
            +
                        position_ids = cache_position.unsqueeze(0)
         | 
| 1358 | 
            +
             | 
| 1359 | 
            +
                    causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
         | 
| 1360 | 
            +
                    mamba_mask = self._update_mamba_mask(attention_mask, cache_position)
         | 
| 1361 | 
            +
             | 
| 1362 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 1363 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 1364 | 
            +
                    # Until HERE
         | 
| 1365 | 
            +
             | 
| 1366 | 
            +
                    for layer_idx, mixer_block in enumerate(self.layers):
         | 
| 1367 | 
            +
                        # Depending on the layer type we opt for 2D base attention mask (Mamba) or 4D causal mask (Attention)
         | 
| 1368 | 
            +
                        if mixer_block.block_type == "mamba":
         | 
| 1369 | 
            +
                            layer_mask = mamba_mask
         | 
| 1370 | 
            +
                        elif mixer_block.block_type == "attention":
         | 
| 1371 | 
            +
                            layer_mask = causal_mask
         | 
| 1372 | 
            +
                        elif mixer_block.block_type == "mlp":
         | 
| 1373 | 
            +
                            layer_mask = None
         | 
| 1374 | 
            +
                        else:
         | 
| 1375 | 
            +
                            raise ValueError(f"Invalid block_type: {self.block_type}")
         | 
| 1376 | 
            +
             | 
| 1377 | 
            +
                        if output_hidden_states:
         | 
| 1378 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 1379 | 
            +
             | 
| 1380 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 1381 | 
            +
                            hidden_states = self._gradient_checkpointing_func(
         | 
| 1382 | 
            +
                                mixer_block.__call__, hidden_states, cache_params, cache_position, layer_mask
         | 
| 1383 | 
            +
                            )
         | 
| 1384 | 
            +
                        else:
         | 
| 1385 | 
            +
                            hidden_states = mixer_block(
         | 
| 1386 | 
            +
                                hidden_states,
         | 
| 1387 | 
            +
                                cache_params=cache_params,
         | 
| 1388 | 
            +
                                cache_position=cache_position,
         | 
| 1389 | 
            +
                                attention_mask=layer_mask,
         | 
| 1390 | 
            +
                            )
         | 
| 1391 | 
            +
             | 
| 1392 | 
            +
                        # TODO: Store attentions
         | 
| 1393 | 
            +
                        # if output_attentions:
         | 
| 1394 | 
            +
                        #     if layer_outputs[1] is not None:
         | 
| 1395 | 
            +
                        #         # append attentions only of attention layers. Mamba layers return `None` as the attention weights
         | 
| 1396 | 
            +
                        #         all_self_attns += (layer_outputs[1],)
         | 
| 1397 | 
            +
             | 
| 1398 | 
            +
                        # TODO (Check): should it happen before the forward pass?
         | 
| 1399 | 
            +
                        # if output_hidden_states:
         | 
| 1400 | 
            +
                        #     all_hidden_states = all_hidden_states + (hidden_states,)
         | 
| 1401 | 
            +
             | 
| 1402 | 
            +
                    hidden_states = self.norm_f(hidden_states)
         | 
| 1403 | 
            +
             | 
| 1404 | 
            +
                    if output_hidden_states:
         | 
| 1405 | 
            +
                        all_hidden_states = all_hidden_states + (hidden_states,)
         | 
| 1406 | 
            +
             | 
| 1407 | 
            +
                    if not return_dict:
         | 
| 1408 | 
            +
                        return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
         | 
| 1409 | 
            +
             | 
| 1410 | 
            +
                    return NemotronHOutput(
         | 
| 1411 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 1412 | 
            +
                        cache_params=cache_params if use_cache else None,
         | 
| 1413 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 1414 | 
            +
                        attentions=all_self_attns,
         | 
| 1415 | 
            +
                    )
         | 
| 1416 | 
            +
             | 
| 1417 | 
            +
                # Copied from transformers.models.jamba.modeling_jamba.JambaModel._update_causal_mask
         | 
| 1418 | 
            +
                def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
         | 
| 1419 | 
            +
                    if self.config._attn_implementation == "flash_attention_2":
         | 
| 1420 | 
            +
                        if attention_mask is not None and 0.0 in attention_mask:
         | 
| 1421 | 
            +
                            return attention_mask
         | 
| 1422 | 
            +
                        return None
         | 
| 1423 | 
            +
             | 
| 1424 | 
            +
                    dtype, device = input_tensor.dtype, input_tensor.device
         | 
| 1425 | 
            +
                    min_dtype = torch.finfo(dtype).min
         | 
| 1426 | 
            +
                    sequence_length = input_tensor.shape[1]
         | 
| 1427 | 
            +
                    target_length = cache_position[-1] + 1
         | 
| 1428 | 
            +
             | 
| 1429 | 
            +
                    causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
         | 
| 1430 | 
            +
                    if sequence_length != 1:
         | 
| 1431 | 
            +
                        causal_mask = torch.triu(causal_mask, diagonal=1)
         | 
| 1432 | 
            +
                    causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
         | 
| 1433 | 
            +
                    causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
         | 
| 1434 | 
            +
                    if attention_mask is not None:
         | 
| 1435 | 
            +
                        causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
         | 
| 1436 | 
            +
                        if attention_mask.dim() == 2:
         | 
| 1437 | 
            +
                            mask_length = attention_mask.shape[-1]
         | 
| 1438 | 
            +
                            padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
         | 
| 1439 | 
            +
                            causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
         | 
| 1440 | 
            +
             | 
| 1441 | 
            +
                    if (
         | 
| 1442 | 
            +
                        self.config._attn_implementation == "sdpa"
         | 
| 1443 | 
            +
                        and attention_mask is not None
         | 
| 1444 | 
            +
                        and attention_mask.device.type == "cuda"
         | 
| 1445 | 
            +
                    ):
         | 
| 1446 | 
            +
                        # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
         | 
| 1447 | 
            +
                        # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
         | 
| 1448 | 
            +
                        # Details: https://github.com/pytorch/pytorch/issues/110213
         | 
| 1449 | 
            +
                        causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
         | 
| 1450 | 
            +
             | 
| 1451 | 
            +
                    return causal_mask
         | 
| 1452 | 
            +
             | 
| 1453 | 
            +
                def _update_mamba_mask(self, attention_mask, cache_position):
         | 
| 1454 | 
            +
                    """
         | 
| 1455 | 
            +
                    No need for zeroing states when
         | 
| 1456 | 
            +
                        1. Cached forward
         | 
| 1457 | 
            +
                        2. Attending to all inputs
         | 
| 1458 | 
            +
                    """
         | 
| 1459 | 
            +
                    mamba_mask = attention_mask
         | 
| 1460 | 
            +
                    if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)):
         | 
| 1461 | 
            +
                        mamba_mask = None
         | 
| 1462 | 
            +
                    return mamba_mask
         | 
| 1463 | 
            +
             | 
| 1464 | 
            +
             | 
| 1465 | 
            +
            @add_start_docstrings(
         | 
| 1466 | 
            +
                """
         | 
| 1467 | 
            +
                The NEMOTRONH Model transformer with a language modeling head on top (linear layer with weights not tied to the input
         | 
| 1468 | 
            +
                embeddings).
         | 
| 1469 | 
            +
                """,
         | 
| 1470 | 
            +
                NEMOTRONH_START_DOCSTRING,
         | 
| 1471 | 
            +
            )
         | 
| 1472 | 
            +
            class NemotronHForCausalLM(NemotronHPreTrainedModel, GenerationMixin):
         | 
| 1473 | 
            +
                _tied_weights_keys = ["lm_head.weight"]
         | 
| 1474 | 
            +
             | 
| 1475 | 
            +
                def __init__(self, config):
         | 
| 1476 | 
            +
                    super().__init__(config)
         | 
| 1477 | 
            +
                    self.backbone = NemotronHModel(config)
         | 
| 1478 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1479 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 1480 | 
            +
             | 
| 1481 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1482 | 
            +
                    self.post_init()
         | 
| 1483 | 
            +
             | 
| 1484 | 
            +
                def get_input_embeddings(self):
         | 
| 1485 | 
            +
                    return self.backbone.get_input_embeddings()
         | 
| 1486 | 
            +
             | 
| 1487 | 
            +
                def set_input_embeddings(self, new_embeddings):
         | 
| 1488 | 
            +
                    return self.backbone.set_input_embeddings(new_embeddings)
         | 
| 1489 | 
            +
             | 
| 1490 | 
            +
                def get_output_embeddings(self):
         | 
| 1491 | 
            +
                    return self.lm_head
         | 
| 1492 | 
            +
             | 
| 1493 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 1494 | 
            +
                    self.lm_head = new_embeddings
         | 
| 1495 | 
            +
             | 
| 1496 | 
            +
                def get_decoder(self):
         | 
| 1497 | 
            +
                    return self.model
         | 
| 1498 | 
            +
             | 
| 1499 | 
            +
                def set_decoder(self, decoder):
         | 
| 1500 | 
            +
                    self.model = decoder
         | 
| 1501 | 
            +
             | 
| 1502 | 
            +
                def prepare_inputs_for_generation(
         | 
| 1503 | 
            +
                    self,
         | 
| 1504 | 
            +
                    input_ids,
         | 
| 1505 | 
            +
                    past_key_values=None,
         | 
| 1506 | 
            +
                    attention_mask=None,
         | 
| 1507 | 
            +
                    inputs_embeds=None,
         | 
| 1508 | 
            +
                    cache_position=None,
         | 
| 1509 | 
            +
                    position_ids=None,
         | 
| 1510 | 
            +
                    use_cache=True,
         | 
| 1511 | 
            +
                    **kwargs,
         | 
| 1512 | 
            +
                ):
         | 
| 1513 | 
            +
                    # Copy from https://github.com/huggingface/transformers/blob/main/src/transformers/models/jamba/modeling_jamba.py
         | 
| 1514 | 
            +
                    # Overwitten -- uses `cache_params` as opposed to `past_key_values`
         | 
| 1515 | 
            +
                    empty_past_kv = past_key_values is None
         | 
| 1516 | 
            +
             | 
| 1517 | 
            +
                    # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
         | 
| 1518 | 
            +
                    # Exception 1: when passing input_embeds, input_ids may be missing entries
         | 
| 1519 | 
            +
                    # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
         | 
| 1520 | 
            +
                    # Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
         | 
| 1521 | 
            +
                    #              (we can't check exception 3 while compiling)
         | 
| 1522 | 
            +
                    if not empty_past_kv:
         | 
| 1523 | 
            +
                        if (
         | 
| 1524 | 
            +
                            inputs_embeds is not None  # Exception 1
         | 
| 1525 | 
            +
                            or cache_position[-1] >= input_ids.shape[1]  # Exception 3
         | 
| 1526 | 
            +
                        ):
         | 
| 1527 | 
            +
                            input_ids = input_ids[:, -cache_position.shape[0] :]
         | 
| 1528 | 
            +
                        elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
         | 
| 1529 | 
            +
                            input_ids = input_ids[:, cache_position]
         | 
| 1530 | 
            +
                    else:
         | 
| 1531 | 
            +
                        past_key_values = HybridMambaAttentionDynamicCache(
         | 
| 1532 | 
            +
                            self.config, input_ids.shape[0], self.dtype, device=self.device
         | 
| 1533 | 
            +
                        )
         | 
| 1534 | 
            +
             | 
| 1535 | 
            +
                    if attention_mask is not None and position_ids is None:
         | 
| 1536 | 
            +
                        # create position_ids on the fly for batch generation
         | 
| 1537 | 
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 1538 | 
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 1539 | 
            +
                        if not empty_past_kv:
         | 
| 1540 | 
            +
                            position_ids = position_ids[:, -input_ids.shape[1] :]
         | 
| 1541 | 
            +
             | 
| 1542 | 
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 1543 | 
            +
                    if inputs_embeds is not None and empty_past_kv:
         | 
| 1544 | 
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         | 
| 1545 | 
            +
                    else:
         | 
| 1546 | 
            +
                        model_inputs = {"input_ids": input_ids.contiguous()}  # `contiguous()` needed for compilation use cases
         | 
| 1547 | 
            +
             | 
| 1548 | 
            +
                    model_inputs.update(
         | 
| 1549 | 
            +
                        {
         | 
| 1550 | 
            +
                            "position_ids": position_ids,
         | 
| 1551 | 
            +
                            "past_key_values": past_key_values,
         | 
| 1552 | 
            +
                            "use_cache": use_cache,
         | 
| 1553 | 
            +
                            "attention_mask": attention_mask,
         | 
| 1554 | 
            +
                            "logits_to_keep": self.config.num_logits_to_keep,
         | 
| 1555 | 
            +
                            "cache_position": cache_position,
         | 
| 1556 | 
            +
                        }
         | 
| 1557 | 
            +
                    )
         | 
| 1558 | 
            +
                    return model_inputs
         | 
| 1559 | 
            +
             | 
| 1560 | 
            +
                @add_start_docstrings_to_model_forward(NEMOTRONH_INPUTS_DOCSTRING)
         | 
| 1561 | 
            +
                @add_code_sample_docstrings(
         | 
| 1562 | 
            +
                    checkpoint=_CHECKPOINT_FOR_DOC,
         | 
| 1563 | 
            +
                    output_type=NemotronHCausalLMOutput,
         | 
| 1564 | 
            +
                    config_class=_CONFIG_FOR_DOC,
         | 
| 1565 | 
            +
                )
         | 
| 1566 | 
            +
                def forward(
         | 
| 1567 | 
            +
                    self,
         | 
| 1568 | 
            +
                    input_ids: Optional[torch.LongTensor] = None,
         | 
| 1569 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1570 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1571 | 
            +
                    cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
         | 
| 1572 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1573 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1574 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1575 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1576 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1577 | 
            +
                    cache_position: Optional[torch.Tensor] = None,
         | 
| 1578 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1579 | 
            +
                    **kwargs,  # for now we need this for generation
         | 
| 1580 | 
            +
                ) -> Union[Tuple, NemotronHCausalLMOutput]:
         | 
| 1581 | 
            +
                    r"""
         | 
| 1582 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1583 | 
            +
                        Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
         | 
| 1584 | 
            +
                        `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
         | 
| 1585 | 
            +
                        are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
         | 
| 1586 | 
            +
                    """
         | 
| 1587 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1588 | 
            +
             | 
| 1589 | 
            +
                    output_hidden_states = (
         | 
| 1590 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1591 | 
            +
                    )
         | 
| 1592 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1593 | 
            +
             | 
| 1594 | 
            +
                    nemotron_h_outputs = self.backbone(
         | 
| 1595 | 
            +
                        input_ids,
         | 
| 1596 | 
            +
                        cache_params=cache_params,
         | 
| 1597 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1598 | 
            +
                        output_attentions=output_attentions,
         | 
| 1599 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1600 | 
            +
                        return_dict=return_dict,
         | 
| 1601 | 
            +
                        use_cache=use_cache,
         | 
| 1602 | 
            +
                        cache_position=cache_position,
         | 
| 1603 | 
            +
                        attention_mask=attention_mask,
         | 
| 1604 | 
            +
                    )
         | 
| 1605 | 
            +
                    hidden_states = nemotron_h_outputs[0]
         | 
| 1606 | 
            +
             | 
| 1607 | 
            +
                    # TODO: Check zamba_modeling.py: https://github.com/huggingface/transformers/blob/d7188ba600e36d3fd191b12e19f1b3bb81a8404f/src/transformers/models/zamba/modeling_zamba.py#L1284C1-L1286C2
         | 
| 1608 | 
            +
                    #logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
         | 
| 1609 | 
            +
                    logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
         | 
| 1610 | 
            +
             | 
| 1611 | 
            +
                    loss = None
         | 
| 1612 | 
            +
                    if labels is not None:
         | 
| 1613 | 
            +
                        # move labels to correct device to enable model parallelism
         | 
| 1614 | 
            +
                        labels = labels.to(logits.device)
         | 
| 1615 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 1616 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 1617 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 1618 | 
            +
                        # Flatten the tokens
         | 
| 1619 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1620 | 
            +
                        loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
         | 
| 1621 | 
            +
             | 
| 1622 | 
            +
                    if not return_dict:
         | 
| 1623 | 
            +
                        output = (logits,) + nemotron_h_outputs[1:]
         | 
| 1624 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1625 | 
            +
             | 
| 1626 | 
            +
                    return NemotronHCausalLMOutput(
         | 
| 1627 | 
            +
                        loss=loss,
         | 
| 1628 | 
            +
                        logits=logits,
         | 
| 1629 | 
            +
                        cache_params=nemotron_h_outputs.cache_params,
         | 
| 1630 | 
            +
                        hidden_states=nemotron_h_outputs.hidden_states,
         | 
| 1631 | 
            +
                        attentions=nemotron_h_outputs.attentions,
         | 
| 1632 | 
            +
                    )
         | 
