itlevy commited on
Commit
b5dfaf4
·
verified ·
0 Parent(s):

transformers>=4.44.2, backward compat

Browse files
Files changed (42) hide show
  1. .gitattributes +35 -0
  2. README.md +182 -0
  3. __init__.py +0 -0
  4. config.json +1004 -0
  5. configuration_decilm.py +99 -0
  6. model-00001-of-00022.safetensors +3 -0
  7. model-00002-of-00022.safetensors +3 -0
  8. model-00003-of-00022.safetensors +3 -0
  9. model-00004-of-00022.safetensors +3 -0
  10. model-00005-of-00022.safetensors +3 -0
  11. model-00006-of-00022.safetensors +3 -0
  12. model-00007-of-00022.safetensors +3 -0
  13. model-00008-of-00022.safetensors +3 -0
  14. model-00009-of-00022.safetensors +3 -0
  15. model-00010-of-00022.safetensors +3 -0
  16. model-00011-of-00022.safetensors +3 -0
  17. model-00012-of-00022.safetensors +3 -0
  18. model-00013-of-00022.safetensors +3 -0
  19. model-00014-of-00022.safetensors +3 -0
  20. model-00015-of-00022.safetensors +3 -0
  21. model-00016-of-00022.safetensors +3 -0
  22. model-00017-of-00022.safetensors +3 -0
  23. model-00018-of-00022.safetensors +3 -0
  24. model-00019-of-00022.safetensors +3 -0
  25. model-00020-of-00022.safetensors +3 -0
  26. model-00021-of-00022.safetensors +3 -0
  27. model-00022-of-00022.safetensors +3 -0
  28. model.safetensors.index.json +636 -0
  29. modeling_decilm.py +1665 -0
  30. special_tokens_map.json +16 -0
  31. tokenizer.json +0 -0
  32. tokenizer_chat_template.jinja +6 -0
  33. tokenizer_config.json +2062 -0
  34. transformers_4_44_2__activations.py +239 -0
  35. transformers_4_44_2__cache_utils.py +325 -0
  36. transformers_4_44_2__configuration_llama.py +203 -0
  37. transformers_4_44_2__modeling_attn_mask_utils.py +482 -0
  38. transformers_4_44_2__modeling_flash_attention_utils_backward_compat.py +348 -0
  39. transformers_4_44_2__modeling_outputs.py +0 -0
  40. transformers_4_44_2__modeling_rope_utils.py +559 -0
  41. transformers_4_44_2__pytorch_utils.py +17 -0
  42. variable_cache.py +108 -0
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ pipeline_tag: text-generation
4
+ language:
5
+ - en
6
+ tags:
7
+ - nvidia
8
+ - llama-3
9
+ - pytorch
10
+ license: other
11
+ license_name: nvidia-ai-foundation-models-community-license
12
+ license_link: >-
13
+ https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-ai-foundation-models-community-license-agreement/
14
+ ---
15
+
16
+ # Llama-3_1-Nemotron-51B-instruct
17
+
18
+
19
+
20
+ ## Model Overview
21
+ Llama-3_1-Nemotron-51B-instruct is a model which offers a great tradeoff between model accuracy and efficiency. Efficiency (throughput) directly translates to price, providing great ‘quality-per-dollar’. Using a novel Neural Architecture Search (NAS) approach we greatly reduce the model’s memory footprint, enabling larger workloads, as well as fitting the model on a single GPU at high workloads (H100-80GB). This NAS approach enables the selection of a desired point in the accuracy-efficiency tradeoff. This model is ready for commercial use.
22
+
23
+
24
+ ## License
25
+ [NVIDIA AI Foundation Models Community License Agreement](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-ai-foundation-models-community-license-agreement/). Additional Information: [Llama 3.1 Community License Agreement](https://www.llama.com/llama3_1/license/). Built with Llama.
26
+
27
+ ## How was the model developed
28
+
29
+ Llama-3_1-Nemotron-51B-instruct is a large language model (LLM) which is a derivative of Llama-3.1-70B-instruct (AKA the reference model). We utilize a block-wise distillation of the reference model, where for each block we create multiple variants providing different tradeoffs of quality vs. computational complexity. We then search over the blocks to create a model which meets the required throughput and memory (optimized for a single H100-80GB GPU) while minimizing the quality degradation. The model then undergoes knowledge distillation (KD), with a focus on English single and multi-turn chat use-cases.
30
+ The KD step included 40 billion tokens consisting of a mixture of 3 datasets - FineWeb, Buzz-V1.2 and Dolma.
31
+
32
+ Links to [NIM](https://build.nvidia.com/nvidia/llama-3_1-nemotron-51b-instruct), [blog](https://developer.nvidia.com/blog/advancing-the-accuracy-efficiency-frontier-with-llama-3-1-nemotron-51b/) and [huggingface](https://huggingface.co/nvidia/Llama-3_1-Nemotron-51B-Instruct)
33
+
34
+
35
+ This results in a final model that is aligned for human chat preferences.
36
+
37
+ **Model Developers:** NVIDIA
38
+
39
+ **Model Input:** Text only
40
+
41
+ **Model Output:** Text only
42
+
43
+ **Model Dates:** Llama-3_1-Nemotron-51B-instruct was trained between August and September 2024
44
+
45
+ **Data Freshness:** The pretraining data has a cutoff of 2023
46
+
47
+ **Sequence Length Used During Distillation:** 8192
48
+
49
+
50
+ ## Quick Start
51
+ Our code requires the `transformers` package version to be 4.44.2 or higher
52
+
53
+ See the snippet below for usage with transformers:
54
+ ```python
55
+ import torch
56
+ import transformers
57
+
58
+ model_id = "nvidia/Llama-3_1-Nemotron-51B-Instruct"
59
+ model_kwargs = {"torch_dtype": torch.bfloat16, "trust_remote_code": True, "device_map": "auto"}
60
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
61
+ tokenizer.pad_token_id = tokenizer.eos_token_id
62
+
63
+ pipeline = transformers.pipeline(
64
+ "text-generation",
65
+ model=model_id,
66
+ tokenizer=tokenizer,
67
+ max_new_tokens=20,
68
+ **model_kwargs
69
+ )
70
+ print(pipeline([{"role": "user", "content": "Hey how are you?"}]))
71
+ ```
72
+
73
+
74
+
75
+ ## Required Hardware
76
+
77
+ FP8 Inference (recommended):
78
+ - 1x H100-80GB GPU
79
+
80
+ BF16 Inference:
81
+ - 2x H100-80GB GPUs
82
+ - 2x A100-80GB GPUs
83
+
84
+
85
+ ## Model Architecture
86
+ The model is a derivative of Llama-3.1-70B, using Neural Architecture Search (NAS). The NAS algorithm results in non-standard and non-repetitive blocks. This includes the following:
87
+ * Variable Grouped Query Attention (VGQA) - each block can have a different number of KV (keys and values) heads, ranging from 1 to Llama’s typical 8.
88
+ * Skip attention - in some blocks the attention is skipped entirely, or replaced with a single linear layer.
89
+ * Variable FFN - the expansion/compression ratio in the FFN layer is different between blocks.
90
+
91
+
92
+ **Architecture Type:** Transformer Decoder (auto-regressive language model)
93
+
94
+ ## Software Integration
95
+ **Runtime Engine(s):**
96
+ * NeMo 24.05 <br>
97
+
98
+
99
+ **Supported Hardware Architecture Compatibility:** NVIDIA H100, A100 80GB (BF16 quantization).
100
+
101
+ **[Preferred/Supported] Operating System(s):** <br>
102
+ * Linux <br>
103
+
104
+ ## Intended use
105
+
106
+ Llama-3_1-Nemotron-51B-Instruct is a general purpose chat model intended to be used in English and coding languages. Other non-English languages are also supported.
107
+
108
+ ## Evaluation Results
109
+
110
+ **Data Collection Method by dataset** <br>
111
+ * Automated <br>
112
+
113
+
114
+ ### MT-Bench
115
+
116
+ Evaluated using select datasets from the [Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena](https://arxiv.org/pdf/2306.05685v4)
117
+ MT-bench - 8.99
118
+
119
+
120
+ ### MMLU
121
+
122
+ Evaluated using the Multi-task Language Understanding benchmarks as introduced in [Measuring Massive Multitask Language Understanding](https://arxiv.org/pdf/2009.03300)
123
+
124
+ |MMLU (5-shot) |
125
+ | :----------------- |
126
+ | 80.2% |
127
+
128
+ ### GSM8K
129
+
130
+ Evaluated using the Grade School Math 8K (GSM8K) benchmark as introduced in [Training Verifiers to Solve Math Word Problems](https://arxiv.org/pdf/2110.14168v2)
131
+
132
+ |GSM8K (5-shot) |
133
+ | :----------------- |
134
+ | 91.43% |
135
+
136
+ ### Winogrande
137
+
138
+ |Winogrande (5-shot) |
139
+ | :----------------- |
140
+ | 84.53% |
141
+
142
+ ### Arc-C
143
+
144
+ |Arc challenge (25-shot) |
145
+ | :----------------- |
146
+ | 69.20% |
147
+
148
+ ### Hellaswag
149
+
150
+ |Hellaswag (10-shot) |
151
+ | :----------------- |
152
+ | 85.58% |
153
+
154
+ ### Truthful QA
155
+
156
+ |TruthfulQA (0-shot) |
157
+ | :----------------- |
158
+ | 58.63%% |
159
+
160
+ ## Limitations
161
+
162
+ The model was trained on data that contains toxic language, unsafe content, and societal biases originally crawled from the internet. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. The model may generate answers that may be inaccurate, omit key information, or include irrelevant or redundant text producing socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.
163
+
164
+ The model demonstrates weakness to alignment-breaking attacks. Users are advised to deploy language model guardrails alongside this model to prevent potentially harmful outputs.
165
+
166
+ ## Adversarial Testing and Red Teaming Efforts
167
+
168
+ The Llama-3_1-Nemotron-51B-instruct model underwent extensive safety evaluation including adversarial testing via three distinct methods:
169
+ * [Garak](https://docs.garak.ai/garak), is an automated LLM vulnerability scanner that probes for common weaknesses, including prompt injection and data leakage.
170
+ * [AEGIS](https://arxiv.org/pdf/2404.05993), is a content safety evaluation dataset and LLM based content safety classifier model, that adheres to a broad taxonomy of 13 categories of critical risks in human-LLM interactions.
171
+ * Human Content Red Teaming leveraging human interaction and evaluation of the models' responses.
172
+
173
+
174
+ ## Inference
175
+ **Engine:** Tensor(RT) <br>
176
+ **Test Hardware** H100-80GB <br>
177
+
178
+
179
+ ## Ethical Considerations
180
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
181
+
182
+ Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
__init__.py ADDED
File without changes
config.json ADDED
@@ -0,0 +1,1004 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DeciLMForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_decilm.DeciLMConfig",
9
+ "AutoModelForCausalLM": "modeling_decilm.DeciLMForCausalLM"
10
+ },
11
+ "block_configs": [
12
+ {
13
+ "attention": {
14
+ "n_heads_in_group": 8,
15
+ "no_op": false,
16
+ "replace_with_linear": false
17
+ },
18
+ "ffn": {
19
+ "ffn_mult": 1.3125,
20
+ "no_op": false,
21
+ "replace_with_linear": false
22
+ }
23
+ },
24
+ {
25
+ "attention": {
26
+ "n_heads_in_group": 16,
27
+ "no_op": false,
28
+ "replace_with_linear": false
29
+ },
30
+ "ffn": {
31
+ "ffn_mult": 2.625,
32
+ "no_op": false,
33
+ "replace_with_linear": false
34
+ }
35
+ },
36
+ {
37
+ "attention": {
38
+ "n_heads_in_group": 8,
39
+ "no_op": false,
40
+ "replace_with_linear": false
41
+ },
42
+ "ffn": {
43
+ "ffn_mult": 5.25,
44
+ "no_op": false,
45
+ "replace_with_linear": false
46
+ }
47
+ },
48
+ {
49
+ "attention": {
50
+ "n_heads_in_group": 8,
51
+ "no_op": false,
52
+ "replace_with_linear": false
53
+ },
54
+ "ffn": {
55
+ "ffn_mult": 5.25,
56
+ "no_op": false,
57
+ "replace_with_linear": false
58
+ }
59
+ },
60
+ {
61
+ "attention": {
62
+ "n_heads_in_group": 8,
63
+ "no_op": false,
64
+ "replace_with_linear": false
65
+ },
66
+ "ffn": {
67
+ "ffn_mult": 5.25,
68
+ "no_op": false,
69
+ "replace_with_linear": false
70
+ }
71
+ },
72
+ {
73
+ "attention": {
74
+ "n_heads_in_group": 32,
75
+ "no_op": false,
76
+ "replace_with_linear": false
77
+ },
78
+ "ffn": {
79
+ "ffn_mult": 2.625,
80
+ "no_op": false,
81
+ "replace_with_linear": false
82
+ }
83
+ },
84
+ {
85
+ "attention": {
86
+ "n_heads_in_group": 32,
87
+ "no_op": false,
88
+ "replace_with_linear": false
89
+ },
90
+ "ffn": {
91
+ "ffn_mult": 2.625,
92
+ "no_op": false,
93
+ "replace_with_linear": false
94
+ }
95
+ },
96
+ {
97
+ "attention": {
98
+ "n_heads_in_group": 64,
99
+ "no_op": false,
100
+ "replace_with_linear": false
101
+ },
102
+ "ffn": {
103
+ "ffn_mult": 2.625,
104
+ "no_op": false,
105
+ "replace_with_linear": false
106
+ }
107
+ },
108
+ {
109
+ "attention": {
110
+ "n_heads_in_group": 64,
111
+ "no_op": false,
112
+ "replace_with_linear": false
113
+ },
114
+ "ffn": {
115
+ "ffn_mult": 2.625,
116
+ "no_op": false,
117
+ "replace_with_linear": false
118
+ }
119
+ },
120
+ {
121
+ "attention": {
122
+ "n_heads_in_group": 32,
123
+ "no_op": false,
124
+ "replace_with_linear": false
125
+ },
126
+ "ffn": {
127
+ "ffn_mult": 2.625,
128
+ "no_op": false,
129
+ "replace_with_linear": false
130
+ }
131
+ },
132
+ {
133
+ "attention": {
134
+ "n_heads_in_group": 32,
135
+ "no_op": false,
136
+ "replace_with_linear": false
137
+ },
138
+ "ffn": {
139
+ "ffn_mult": 2.625,
140
+ "no_op": false,
141
+ "replace_with_linear": false
142
+ }
143
+ },
144
+ {
145
+ "attention": {
146
+ "n_heads_in_group": null,
147
+ "no_op": false,
148
+ "replace_with_linear": true
149
+ },
150
+ "ffn": {
151
+ "ffn_mult": 2.625,
152
+ "no_op": false,
153
+ "replace_with_linear": false
154
+ }
155
+ },
156
+ {
157
+ "attention": {
158
+ "n_heads_in_group": 64,
159
+ "no_op": false,
160
+ "replace_with_linear": false
161
+ },
162
+ "ffn": {
163
+ "ffn_mult": 2.625,
164
+ "no_op": false,
165
+ "replace_with_linear": false
166
+ }
167
+ },
168
+ {
169
+ "attention": {
170
+ "n_heads_in_group": 32,
171
+ "no_op": false,
172
+ "replace_with_linear": false
173
+ },
174
+ "ffn": {
175
+ "ffn_mult": 2.625,
176
+ "no_op": false,
177
+ "replace_with_linear": false
178
+ }
179
+ },
180
+ {
181
+ "attention": {
182
+ "n_heads_in_group": 32,
183
+ "no_op": false,
184
+ "replace_with_linear": false
185
+ },
186
+ "ffn": {
187
+ "ffn_mult": 2.625,
188
+ "no_op": false,
189
+ "replace_with_linear": false
190
+ }
191
+ },
192
+ {
193
+ "attention": {
194
+ "n_heads_in_group": null,
195
+ "no_op": false,
196
+ "replace_with_linear": true
197
+ },
198
+ "ffn": {
199
+ "ffn_mult": 1.3125,
200
+ "no_op": false,
201
+ "replace_with_linear": false
202
+ }
203
+ },
204
+ {
205
+ "attention": {
206
+ "n_heads_in_group": 8,
207
+ "no_op": false,
208
+ "replace_with_linear": false
209
+ },
210
+ "ffn": {
211
+ "ffn_mult": 5.25,
212
+ "no_op": false,
213
+ "replace_with_linear": false
214
+ }
215
+ },
216
+ {
217
+ "attention": {
218
+ "n_heads_in_group": 8,
219
+ "no_op": false,
220
+ "replace_with_linear": false
221
+ },
222
+ "ffn": {
223
+ "ffn_mult": 5.25,
224
+ "no_op": false,
225
+ "replace_with_linear": false
226
+ }
227
+ },
228
+ {
229
+ "attention": {
230
+ "n_heads_in_group": 8,
231
+ "no_op": false,
232
+ "replace_with_linear": false
233
+ },
234
+ "ffn": {
235
+ "ffn_mult": 5.25,
236
+ "no_op": false,
237
+ "replace_with_linear": false
238
+ }
239
+ },
240
+ {
241
+ "attention": {
242
+ "n_heads_in_group": 8,
243
+ "no_op": false,
244
+ "replace_with_linear": false
245
+ },
246
+ "ffn": {
247
+ "ffn_mult": 5.25,
248
+ "no_op": false,
249
+ "replace_with_linear": false
250
+ }
251
+ },
252
+ {
253
+ "attention": {
254
+ "n_heads_in_group": 8,
255
+ "no_op": false,
256
+ "replace_with_linear": false
257
+ },
258
+ "ffn": {
259
+ "ffn_mult": 5.25,
260
+ "no_op": false,
261
+ "replace_with_linear": false
262
+ }
263
+ },
264
+ {
265
+ "attention": {
266
+ "n_heads_in_group": 8,
267
+ "no_op": false,
268
+ "replace_with_linear": false
269
+ },
270
+ "ffn": {
271
+ "ffn_mult": 5.25,
272
+ "no_op": false,
273
+ "replace_with_linear": false
274
+ }
275
+ },
276
+ {
277
+ "attention": {
278
+ "n_heads_in_group": 8,
279
+ "no_op": false,
280
+ "replace_with_linear": false
281
+ },
282
+ "ffn": {
283
+ "ffn_mult": 5.25,
284
+ "no_op": false,
285
+ "replace_with_linear": false
286
+ }
287
+ },
288
+ {
289
+ "attention": {
290
+ "n_heads_in_group": 8,
291
+ "no_op": false,
292
+ "replace_with_linear": false
293
+ },
294
+ "ffn": {
295
+ "ffn_mult": 5.25,
296
+ "no_op": false,
297
+ "replace_with_linear": false
298
+ }
299
+ },
300
+ {
301
+ "attention": {
302
+ "n_heads_in_group": 8,
303
+ "no_op": false,
304
+ "replace_with_linear": false
305
+ },
306
+ "ffn": {
307
+ "ffn_mult": 5.25,
308
+ "no_op": false,
309
+ "replace_with_linear": false
310
+ }
311
+ },
312
+ {
313
+ "attention": {
314
+ "n_heads_in_group": 8,
315
+ "no_op": false,
316
+ "replace_with_linear": false
317
+ },
318
+ "ffn": {
319
+ "ffn_mult": 5.25,
320
+ "no_op": false,
321
+ "replace_with_linear": false
322
+ }
323
+ },
324
+ {
325
+ "attention": {
326
+ "n_heads_in_group": 8,
327
+ "no_op": false,
328
+ "replace_with_linear": false
329
+ },
330
+ "ffn": {
331
+ "ffn_mult": 5.25,
332
+ "no_op": false,
333
+ "replace_with_linear": false
334
+ }
335
+ },
336
+ {
337
+ "attention": {
338
+ "n_heads_in_group": 8,
339
+ "no_op": false,
340
+ "replace_with_linear": false
341
+ },
342
+ "ffn": {
343
+ "ffn_mult": 5.25,
344
+ "no_op": false,
345
+ "replace_with_linear": false
346
+ }
347
+ },
348
+ {
349
+ "attention": {
350
+ "n_heads_in_group": 8,
351
+ "no_op": false,
352
+ "replace_with_linear": false
353
+ },
354
+ "ffn": {
355
+ "ffn_mult": 5.25,
356
+ "no_op": false,
357
+ "replace_with_linear": false
358
+ }
359
+ },
360
+ {
361
+ "attention": {
362
+ "n_heads_in_group": 8,
363
+ "no_op": false,
364
+ "replace_with_linear": false
365
+ },
366
+ "ffn": {
367
+ "ffn_mult": 5.25,
368
+ "no_op": false,
369
+ "replace_with_linear": false
370
+ }
371
+ },
372
+ {
373
+ "attention": {
374
+ "n_heads_in_group": 8,
375
+ "no_op": false,
376
+ "replace_with_linear": false
377
+ },
378
+ "ffn": {
379
+ "ffn_mult": 5.25,
380
+ "no_op": false,
381
+ "replace_with_linear": false
382
+ }
383
+ },
384
+ {
385
+ "attention": {
386
+ "n_heads_in_group": 8,
387
+ "no_op": false,
388
+ "replace_with_linear": false
389
+ },
390
+ "ffn": {
391
+ "ffn_mult": 5.25,
392
+ "no_op": false,
393
+ "replace_with_linear": false
394
+ }
395
+ },
396
+ {
397
+ "attention": {
398
+ "n_heads_in_group": 8,
399
+ "no_op": false,
400
+ "replace_with_linear": false
401
+ },
402
+ "ffn": {
403
+ "ffn_mult": 5.25,
404
+ "no_op": false,
405
+ "replace_with_linear": false
406
+ }
407
+ },
408
+ {
409
+ "attention": {
410
+ "n_heads_in_group": 8,
411
+ "no_op": false,
412
+ "replace_with_linear": false
413
+ },
414
+ "ffn": {
415
+ "ffn_mult": 5.25,
416
+ "no_op": false,
417
+ "replace_with_linear": false
418
+ }
419
+ },
420
+ {
421
+ "attention": {
422
+ "n_heads_in_group": 8,
423
+ "no_op": false,
424
+ "replace_with_linear": false
425
+ },
426
+ "ffn": {
427
+ "ffn_mult": 5.25,
428
+ "no_op": false,
429
+ "replace_with_linear": false
430
+ }
431
+ },
432
+ {
433
+ "attention": {
434
+ "n_heads_in_group": 8,
435
+ "no_op": false,
436
+ "replace_with_linear": false
437
+ },
438
+ "ffn": {
439
+ "ffn_mult": 5.25,
440
+ "no_op": false,
441
+ "replace_with_linear": false
442
+ }
443
+ },
444
+ {
445
+ "attention": {
446
+ "n_heads_in_group": 8,
447
+ "no_op": false,
448
+ "replace_with_linear": false
449
+ },
450
+ "ffn": {
451
+ "ffn_mult": 5.25,
452
+ "no_op": false,
453
+ "replace_with_linear": false
454
+ }
455
+ },
456
+ {
457
+ "attention": {
458
+ "n_heads_in_group": 8,
459
+ "no_op": false,
460
+ "replace_with_linear": false
461
+ },
462
+ "ffn": {
463
+ "ffn_mult": 5.25,
464
+ "no_op": false,
465
+ "replace_with_linear": false
466
+ }
467
+ },
468
+ {
469
+ "attention": {
470
+ "n_heads_in_group": 8,
471
+ "no_op": false,
472
+ "replace_with_linear": false
473
+ },
474
+ "ffn": {
475
+ "ffn_mult": 5.25,
476
+ "no_op": false,
477
+ "replace_with_linear": false
478
+ }
479
+ },
480
+ {
481
+ "attention": {
482
+ "n_heads_in_group": 8,
483
+ "no_op": false,
484
+ "replace_with_linear": false
485
+ },
486
+ "ffn": {
487
+ "ffn_mult": 5.25,
488
+ "no_op": false,
489
+ "replace_with_linear": false
490
+ }
491
+ },
492
+ {
493
+ "attention": {
494
+ "n_heads_in_group": 8,
495
+ "no_op": false,
496
+ "replace_with_linear": false
497
+ },
498
+ "ffn": {
499
+ "ffn_mult": 5.25,
500
+ "no_op": false,
501
+ "replace_with_linear": false
502
+ }
503
+ },
504
+ {
505
+ "attention": {
506
+ "n_heads_in_group": 8,
507
+ "no_op": false,
508
+ "replace_with_linear": false
509
+ },
510
+ "ffn": {
511
+ "ffn_mult": 5.25,
512
+ "no_op": false,
513
+ "replace_with_linear": false
514
+ }
515
+ },
516
+ {
517
+ "attention": {
518
+ "n_heads_in_group": null,
519
+ "no_op": false,
520
+ "replace_with_linear": true
521
+ },
522
+ "ffn": {
523
+ "ffn_mult": 2.625,
524
+ "no_op": false,
525
+ "replace_with_linear": false
526
+ }
527
+ },
528
+ {
529
+ "attention": {
530
+ "n_heads_in_group": 8,
531
+ "no_op": false,
532
+ "replace_with_linear": false
533
+ },
534
+ "ffn": {
535
+ "ffn_mult": 5.25,
536
+ "no_op": false,
537
+ "replace_with_linear": false
538
+ }
539
+ },
540
+ {
541
+ "attention": {
542
+ "n_heads_in_group": 8,
543
+ "no_op": false,
544
+ "replace_with_linear": false
545
+ },
546
+ "ffn": {
547
+ "ffn_mult": 5.25,
548
+ "no_op": false,
549
+ "replace_with_linear": false
550
+ }
551
+ },
552
+ {
553
+ "attention": {
554
+ "n_heads_in_group": null,
555
+ "no_op": false,
556
+ "replace_with_linear": true
557
+ },
558
+ "ffn": {
559
+ "ffn_mult": 2.625,
560
+ "no_op": false,
561
+ "replace_with_linear": false
562
+ }
563
+ },
564
+ {
565
+ "attention": {
566
+ "n_heads_in_group": null,
567
+ "no_op": false,
568
+ "replace_with_linear": true
569
+ },
570
+ "ffn": {
571
+ "ffn_mult": 5.25,
572
+ "no_op": false,
573
+ "replace_with_linear": false
574
+ }
575
+ },
576
+ {
577
+ "attention": {
578
+ "n_heads_in_group": null,
579
+ "no_op": false,
580
+ "replace_with_linear": true
581
+ },
582
+ "ffn": {
583
+ "ffn_mult": 2.625,
584
+ "no_op": false,
585
+ "replace_with_linear": false
586
+ }
587
+ },
588
+ {
589
+ "attention": {
590
+ "n_heads_in_group": null,
591
+ "no_op": false,
592
+ "replace_with_linear": true
593
+ },
594
+ "ffn": {
595
+ "ffn_mult": 2.625,
596
+ "no_op": false,
597
+ "replace_with_linear": false
598
+ }
599
+ },
600
+ {
601
+ "attention": {
602
+ "n_heads_in_group": null,
603
+ "no_op": false,
604
+ "replace_with_linear": true
605
+ },
606
+ "ffn": {
607
+ "ffn_mult": 2.625,
608
+ "no_op": false,
609
+ "replace_with_linear": false
610
+ }
611
+ },
612
+ {
613
+ "attention": {
614
+ "n_heads_in_group": null,
615
+ "no_op": true,
616
+ "replace_with_linear": false
617
+ },
618
+ "ffn": {
619
+ "ffn_mult": 1.3125,
620
+ "no_op": false,
621
+ "replace_with_linear": false
622
+ }
623
+ },
624
+ {
625
+ "attention": {
626
+ "n_heads_in_group": null,
627
+ "no_op": false,
628
+ "replace_with_linear": true
629
+ },
630
+ "ffn": {
631
+ "ffn_mult": 1.3125,
632
+ "no_op": false,
633
+ "replace_with_linear": false
634
+ }
635
+ },
636
+ {
637
+ "attention": {
638
+ "n_heads_in_group": 8,
639
+ "no_op": false,
640
+ "replace_with_linear": false
641
+ },
642
+ "ffn": {
643
+ "ffn_mult": 5.25,
644
+ "no_op": false,
645
+ "replace_with_linear": false
646
+ }
647
+ },
648
+ {
649
+ "attention": {
650
+ "n_heads_in_group": null,
651
+ "no_op": true,
652
+ "replace_with_linear": false
653
+ },
654
+ "ffn": {
655
+ "ffn_mult": 1.3125,
656
+ "no_op": false,
657
+ "replace_with_linear": false
658
+ }
659
+ },
660
+ {
661
+ "attention": {
662
+ "n_heads_in_group": null,
663
+ "no_op": false,
664
+ "replace_with_linear": true
665
+ },
666
+ "ffn": {
667
+ "ffn_mult": 1.3125,
668
+ "no_op": false,
669
+ "replace_with_linear": false
670
+ }
671
+ },
672
+ {
673
+ "attention": {
674
+ "n_heads_in_group": null,
675
+ "no_op": true,
676
+ "replace_with_linear": false
677
+ },
678
+ "ffn": {
679
+ "ffn_mult": 1.3125,
680
+ "no_op": false,
681
+ "replace_with_linear": false
682
+ }
683
+ },
684
+ {
685
+ "attention": {
686
+ "n_heads_in_group": 8,
687
+ "no_op": false,
688
+ "replace_with_linear": false
689
+ },
690
+ "ffn": {
691
+ "ffn_mult": 5.25,
692
+ "no_op": false,
693
+ "replace_with_linear": false
694
+ }
695
+ },
696
+ {
697
+ "attention": {
698
+ "n_heads_in_group": null,
699
+ "no_op": false,
700
+ "replace_with_linear": true
701
+ },
702
+ "ffn": {
703
+ "ffn_mult": 1.3125,
704
+ "no_op": false,
705
+ "replace_with_linear": false
706
+ }
707
+ },
708
+ {
709
+ "attention": {
710
+ "n_heads_in_group": null,
711
+ "no_op": true,
712
+ "replace_with_linear": false
713
+ },
714
+ "ffn": {
715
+ "ffn_mult": 1.3125,
716
+ "no_op": false,
717
+ "replace_with_linear": false
718
+ }
719
+ },
720
+ {
721
+ "attention": {
722
+ "n_heads_in_group": null,
723
+ "no_op": false,
724
+ "replace_with_linear": true
725
+ },
726
+ "ffn": {
727
+ "ffn_mult": 1.3125,
728
+ "no_op": false,
729
+ "replace_with_linear": false
730
+ }
731
+ },
732
+ {
733
+ "attention": {
734
+ "n_heads_in_group": null,
735
+ "no_op": false,
736
+ "replace_with_linear": true
737
+ },
738
+ "ffn": {
739
+ "ffn_mult": 1.3125,
740
+ "no_op": false,
741
+ "replace_with_linear": false
742
+ }
743
+ },
744
+ {
745
+ "attention": {
746
+ "n_heads_in_group": null,
747
+ "no_op": true,
748
+ "replace_with_linear": false
749
+ },
750
+ "ffn": {
751
+ "ffn_mult": 1.3125,
752
+ "no_op": false,
753
+ "replace_with_linear": false
754
+ }
755
+ },
756
+ {
757
+ "attention": {
758
+ "n_heads_in_group": null,
759
+ "no_op": true,
760
+ "replace_with_linear": false
761
+ },
762
+ "ffn": {
763
+ "ffn_mult": 1.3125,
764
+ "no_op": false,
765
+ "replace_with_linear": false
766
+ }
767
+ },
768
+ {
769
+ "attention": {
770
+ "n_heads_in_group": null,
771
+ "no_op": false,
772
+ "replace_with_linear": true
773
+ },
774
+ "ffn": {
775
+ "ffn_mult": 1.3125,
776
+ "no_op": false,
777
+ "replace_with_linear": false
778
+ }
779
+ },
780
+ {
781
+ "attention": {
782
+ "n_heads_in_group": null,
783
+ "no_op": true,
784
+ "replace_with_linear": false
785
+ },
786
+ "ffn": {
787
+ "ffn_mult": 1.3125,
788
+ "no_op": false,
789
+ "replace_with_linear": false
790
+ }
791
+ },
792
+ {
793
+ "attention": {
794
+ "n_heads_in_group": null,
795
+ "no_op": true,
796
+ "replace_with_linear": false
797
+ },
798
+ "ffn": {
799
+ "ffn_mult": 1.3125,
800
+ "no_op": false,
801
+ "replace_with_linear": false
802
+ }
803
+ },
804
+ {
805
+ "attention": {
806
+ "n_heads_in_group": null,
807
+ "no_op": false,
808
+ "replace_with_linear": true
809
+ },
810
+ "ffn": {
811
+ "ffn_mult": 1.3125,
812
+ "no_op": false,
813
+ "replace_with_linear": false
814
+ }
815
+ },
816
+ {
817
+ "attention": {
818
+ "n_heads_in_group": null,
819
+ "no_op": false,
820
+ "replace_with_linear": true
821
+ },
822
+ "ffn": {
823
+ "ffn_mult": 1.3125,
824
+ "no_op": false,
825
+ "replace_with_linear": false
826
+ }
827
+ },
828
+ {
829
+ "attention": {
830
+ "n_heads_in_group": null,
831
+ "no_op": false,
832
+ "replace_with_linear": true
833
+ },
834
+ "ffn": {
835
+ "ffn_mult": 1.3125,
836
+ "no_op": false,
837
+ "replace_with_linear": false
838
+ }
839
+ },
840
+ {
841
+ "attention": {
842
+ "n_heads_in_group": null,
843
+ "no_op": false,
844
+ "replace_with_linear": true
845
+ },
846
+ "ffn": {
847
+ "ffn_mult": 1.3125,
848
+ "no_op": false,
849
+ "replace_with_linear": false
850
+ }
851
+ },
852
+ {
853
+ "attention": {
854
+ "n_heads_in_group": 8,
855
+ "no_op": false,
856
+ "replace_with_linear": false
857
+ },
858
+ "ffn": {
859
+ "ffn_mult": 5.25,
860
+ "no_op": false,
861
+ "replace_with_linear": false
862
+ }
863
+ },
864
+ {
865
+ "attention": {
866
+ "n_heads_in_group": 8,
867
+ "no_op": false,
868
+ "replace_with_linear": false
869
+ },
870
+ "ffn": {
871
+ "ffn_mult": 5.25,
872
+ "no_op": false,
873
+ "replace_with_linear": false
874
+ }
875
+ },
876
+ {
877
+ "attention": {
878
+ "n_heads_in_group": 8,
879
+ "no_op": false,
880
+ "replace_with_linear": false
881
+ },
882
+ "ffn": {
883
+ "ffn_mult": 5.25,
884
+ "no_op": false,
885
+ "replace_with_linear": false
886
+ }
887
+ },
888
+ {
889
+ "attention": {
890
+ "n_heads_in_group": 8,
891
+ "no_op": false,
892
+ "replace_with_linear": false
893
+ },
894
+ "ffn": {
895
+ "ffn_mult": 5.25,
896
+ "no_op": false,
897
+ "replace_with_linear": false
898
+ }
899
+ },
900
+ {
901
+ "attention": {
902
+ "n_heads_in_group": 8,
903
+ "no_op": false,
904
+ "replace_with_linear": false
905
+ },
906
+ "ffn": {
907
+ "ffn_mult": 5.25,
908
+ "no_op": false,
909
+ "replace_with_linear": false
910
+ }
911
+ },
912
+ {
913
+ "attention": {
914
+ "n_heads_in_group": 8,
915
+ "no_op": false,
916
+ "replace_with_linear": false
917
+ },
918
+ "ffn": {
919
+ "ffn_mult": 5.25,
920
+ "no_op": false,
921
+ "replace_with_linear": false
922
+ }
923
+ },
924
+ {
925
+ "attention": {
926
+ "n_heads_in_group": 8,
927
+ "no_op": false,
928
+ "replace_with_linear": false
929
+ },
930
+ "ffn": {
931
+ "ffn_mult": 5.25,
932
+ "no_op": false,
933
+ "replace_with_linear": false
934
+ }
935
+ },
936
+ {
937
+ "attention": {
938
+ "n_heads_in_group": 8,
939
+ "no_op": false,
940
+ "replace_with_linear": false
941
+ },
942
+ "ffn": {
943
+ "ffn_mult": 5.25,
944
+ "no_op": false,
945
+ "replace_with_linear": false
946
+ }
947
+ },
948
+ {
949
+ "attention": {
950
+ "n_heads_in_group": 8,
951
+ "no_op": false,
952
+ "replace_with_linear": false
953
+ },
954
+ "ffn": {
955
+ "ffn_mult": 5.25,
956
+ "no_op": false,
957
+ "replace_with_linear": false
958
+ }
959
+ },
960
+ {
961
+ "attention": {
962
+ "n_heads_in_group": 8,
963
+ "no_op": false,
964
+ "replace_with_linear": false
965
+ },
966
+ "ffn": {
967
+ "ffn_mult": 5.25,
968
+ "no_op": false,
969
+ "replace_with_linear": false
970
+ }
971
+ }
972
+ ],
973
+ "bos_token_id": 128000,
974
+ "eos_token_id": [
975
+ 128001,
976
+ 128008,
977
+ 128009
978
+ ],
979
+ "hidden_act": "silu",
980
+ "hidden_size": 8192,
981
+ "initializer_range": 0.02,
982
+ "intermediate_size": null,
983
+ "max_position_embeddings": 131072,
984
+ "mlp_bias": false,
985
+ "model_type": "nemotron-nas",
986
+ "num_attention_heads": 64,
987
+ "num_hidden_layers": 80,
988
+ "num_key_value_heads": null,
989
+ "pretraining_tp": 1,
990
+ "rms_norm_eps": 1e-05,
991
+ "rope_scaling": {
992
+ "factor": 8.0,
993
+ "high_freq_factor": 4.0,
994
+ "low_freq_factor": 1.0,
995
+ "original_max_position_embeddings": 8192,
996
+ "rope_type": "llama3"
997
+ },
998
+ "rope_theta": 500000.0,
999
+ "tie_word_embeddings": false,
1000
+ "torch_dtype": "bfloat16",
1001
+ "transformers_version": "4.44.2",
1002
+ "use_cache": true,
1003
+ "vocab_size": 128256
1004
+ }
configuration_decilm.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Nvidia Corporation. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import dataclasses
17
+ import warnings
18
+ from dataclasses import dataclass, MISSING
19
+ from functools import partial
20
+ from typing import Optional, Dict, Any
21
+
22
+ from .transformers_4_44_2__configuration_llama import LlamaConfig
23
+ from .transformers_4_44_2__modeling_rope_utils import \
24
+ rope_config_validation # fake import to make AutoConfig infer the dependency
25
+
26
+
27
+ class DeciLMConfig(LlamaConfig):
28
+ model_type = "nemotron-nas"
29
+
30
+ def __init__(
31
+ self,
32
+ block_configs: list[dict] | list["BlockConfig"] = None,
33
+ **kwargs,
34
+ ):
35
+ super().__init__(**kwargs)
36
+ self.intermediate_size = None
37
+ self.num_key_value_heads = None
38
+
39
+ if block_configs is not None:
40
+ assert len(block_configs) == self.num_hidden_layers
41
+ if isinstance(block_configs[0], dict):
42
+ block_configs = [BlockConfig(**conf) for conf in block_configs]
43
+ self.block_configs: list[BlockConfig] = block_configs
44
+
45
+ def to_dict(self) -> Dict[str, Any]:
46
+ self_dict = super().to_dict()
47
+ if self.block_configs is not None:
48
+ self_dict["block_configs"] = [dataclasses.asdict(conf) for conf in self.block_configs]
49
+ return self_dict
50
+
51
+
52
+ @partial(dataclass, frozen=True, eq=True, unsafe_hash=True, order=True)
53
+ class AttentionConfig:
54
+ no_op: bool = False
55
+ replace_with_linear: bool = False
56
+ n_heads_in_group: Optional[int] = None
57
+
58
+ def __post_init__(self):
59
+ assert not (self.no_op and self.replace_with_linear)
60
+ if self.no_op or self.replace_with_linear:
61
+ object.__setattr__(self, 'n_heads_in_group', None) # __setattr__ to overcome frozen=True
62
+ else:
63
+ assert self.n_heads_in_group is not None
64
+
65
+
66
+ @partial(dataclass, frozen=True, eq=True, unsafe_hash=True, order=True)
67
+ class FFNConfig:
68
+ no_op: bool = False
69
+ replace_with_linear: bool = False
70
+ ffn_mult: Optional[float] = None
71
+
72
+ def __post_init__(self):
73
+ assert not (self.no_op and self.replace_with_linear)
74
+ if self.no_op or self.replace_with_linear:
75
+ object.__setattr__(self, 'ffn_mult', None) # __setattr__ to overcome frozen=True
76
+ else:
77
+ assert self.ffn_mult is not None
78
+
79
+
80
+ @partial(dataclass, frozen=True, eq=True, unsafe_hash=True, order=True)
81
+ class BlockConfig:
82
+ attention: AttentionConfig = MISSING
83
+ ffn: FFNConfig = MISSING
84
+
85
+ def __post_init__(self):
86
+ """
87
+ Init subblock dataclasses from dicts
88
+ """
89
+ for subblock_name in dataclasses.fields(self):
90
+ subblock_config = getattr(self, subblock_name.name)
91
+ if isinstance(subblock_config, dict):
92
+ subblock_fields = [field.name for field in dataclasses.fields(subblock_name.type)]
93
+ unsupported_fields = [field_name for field_name in subblock_config.keys()
94
+ if field_name not in subblock_fields]
95
+ if len(unsupported_fields) > 0:
96
+ warnings.warn(f"Removed unsupported fields {unsupported_fields} from {subblock_name.type.__name__}")
97
+ subblock_config = {k: v for k, v in subblock_config.items() if k not in unsupported_fields}
98
+ object.__setattr__(self, subblock_name.name,
99
+ subblock_name.type(**subblock_config)) # __setattr__ to overcome frozen=True
model-00001-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2990306c9e4715b943eaf3f91473a801dfe04392f3f8768b31edecd8d0eb755
3
+ size 4987128904
model-00002-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6662e17eca5fb9bd4d5a29c3fe5b6bb0ea9a38395da47d6d11d6b85a3f3061de
3
+ size 4873899312
model-00003-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1deba9fb520b3e46ebf0876ea68a913664be24ff542f4ea40d59398f4cafa89a
3
+ size 4899116128
model-00004-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe288cee7ef3dcf45f6b36ecd53c953f07ae01370fb3bb1383c230057fade1b5
3
+ size 4567782440
model-00005-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1387ab2cf92336e52fe7bbf221c6f87a1df82982a795832f2a0564279ab57fd
3
+ size 4999695232
model-00006-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb46455878ff7356a6b1be8e028741a4c3d236e00c9336c40390a062c6e1e2c
3
+ size 4966157072
model-00007-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3c86e900f62463d453585887f1c087d7b9d235fe5c29251409040442d77826d
3
+ size 4664150920
model-00008-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d983395fcc42fdb792e2f7ad0816705b6bb229697a1df1c889f1ad6e1cc17cc5
3
+ size 4664167416
model-00009-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:817460bbcb2878d86051545cf77c87653e53ee20f5db702b8fcda581f6d8c0ba
3
+ size 4664167416
model-00010-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:984f9ec95ae6003feb2f31397a10a01837254ebf8fe6cd32c7c1f98af91d34fe
3
+ size 4999695232
model-00011-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:742ac2ff2d5b8bed496565c687ad1145d251f9685d780b3566756dfa21585cfe
3
+ size 4966157072
model-00012-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e06f3f256c108db9370fa30faca1335de8f7001c06a3a0f676dd9793d3d6e7ea
3
+ size 4664150920
model-00013-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c8a5930428eae56a7b86bcff24dc395005f23e8b2b66a062014306ac4c001e2
3
+ size 4664167416
model-00014-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8fb07d4f8176b5ad0fa65bd0094b0bcc2e39eed43e7d7824da7249f9bc8dfd9
3
+ size 4731276160
model-00015-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c81cac17603aeb4daba647542d5d31fed2ddf14f92664db8db158ee92e5e362
3
+ size 4899114336
model-00016-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a8bd6808d8525e29c163b8f2acc4a5dc48da7de3110e6c47ae3dd19752b5ea0
3
+ size 4983018288
model-00017-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3955e1d2905da27e1bb86df0d1f4cb380644c7d55d576276f52adc38c6e537d0
3
+ size 4899198680
model-00018-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd3ce3dbde6831dcb280b89e1eeef52b976133091c7b2edb077d46c5b7133144
3
+ size 4647456992
model-00019-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f02a07b21d517079feafeedf6192b703dbf15aae712deafdc8cdaa82ba7a5b1f
3
+ size 4664167416
model-00020-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25ae2c6845e6108324d68c52bfcf520ddd24c6ad3ec90e32ec7e4a4ee4dda167
3
+ size 4664167416
model-00021-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0234aebf14d4cb42d483335a984cedb920d6c4285ccefcd4cbe6841c1c1f09c7
3
+ size 4831922696
model-00022-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84a87a2039ad882e51b0b10c1b59f342a9d2efc18c95291d7ae5926d50a195cf
3
+ size 2101346432
model.safetensors.index.json ADDED
@@ -0,0 +1,636 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 103002030080
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00022.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00022.safetensors",
8
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00022.safetensors",
9
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00022.safetensors",
10
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00022.safetensors",
11
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00022.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00022.safetensors",
13
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00022.safetensors",
14
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00022.safetensors",
15
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00022.safetensors",
16
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00022.safetensors",
17
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00022.safetensors",
18
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00022.safetensors",
19
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00022.safetensors",
20
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00022.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00022.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00022.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00022.safetensors",
24
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00022.safetensors",
25
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00022.safetensors",
26
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00022.safetensors",
27
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00022.safetensors",
28
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00022.safetensors",
29
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00022.safetensors",
30
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00022.safetensors",
31
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00022.safetensors",
32
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00022.safetensors",
33
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00022.safetensors",
34
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00022.safetensors",
35
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00022.safetensors",
36
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00022.safetensors",
37
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00022.safetensors",
38
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00022.safetensors",
39
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00022.safetensors",
40
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00022.safetensors",
41
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00022.safetensors",
42
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00022.safetensors",
43
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00022.safetensors",
44
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00022.safetensors",
45
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00022.safetensors",
46
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00022.safetensors",
47
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00022.safetensors",
48
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00022.safetensors",
49
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00022.safetensors",
50
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00022.safetensors",
51
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00022.safetensors",
52
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00022.safetensors",
53
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00022.safetensors",
54
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00022.safetensors",
55
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00022.safetensors",
56
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00022.safetensors",
57
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00022.safetensors",
58
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00022.safetensors",
59
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00022.safetensors",
60
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00022.safetensors",
61
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00022.safetensors",
62
+ "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00022.safetensors",
63
+ "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00022.safetensors",
64
+ "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00022.safetensors",
65
+ "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00022.safetensors",
66
+ "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00022.safetensors",
67
+ "model.layers.6.mlp.gate_proj.weight": "model-00003-of-00022.safetensors",
68
+ "model.layers.6.mlp.up_proj.weight": "model-00003-of-00022.safetensors",
69
+ "model.layers.6.mlp.down_proj.weight": "model-00003-of-00022.safetensors",
70
+ "model.layers.7.input_layernorm.weight": "model-00003-of-00022.safetensors",
71
+ "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00022.safetensors",
72
+ "model.layers.7.self_attn.k_proj.weight": "model-00003-of-00022.safetensors",
73
+ "model.layers.7.self_attn.v_proj.weight": "model-00003-of-00022.safetensors",
74
+ "model.layers.7.self_attn.o_proj.weight": "model-00003-of-00022.safetensors",
75
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00022.safetensors",
76
+ "model.layers.7.mlp.gate_proj.weight": "model-00003-of-00022.safetensors",
77
+ "model.layers.7.mlp.up_proj.weight": "model-00003-of-00022.safetensors",
78
+ "model.layers.7.mlp.down_proj.weight": "model-00003-of-00022.safetensors",
79
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00022.safetensors",
80
+ "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00022.safetensors",
81
+ "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00022.safetensors",
82
+ "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00022.safetensors",
83
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00022.safetensors",
84
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00022.safetensors",
85
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00022.safetensors",
86
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00022.safetensors",
87
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00022.safetensors",
88
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00022.safetensors",
89
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00022.safetensors",
90
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00022.safetensors",
91
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00022.safetensors",
92
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00022.safetensors",
93
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00022.safetensors",
94
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00022.safetensors",
95
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00022.safetensors",
96
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00022.safetensors",
97
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00022.safetensors",
98
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00022.safetensors",
99
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00022.safetensors",
100
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00022.safetensors",
101
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00022.safetensors",
102
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00022.safetensors",
103
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00022.safetensors",
104
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00022.safetensors",
105
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00022.safetensors",
106
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00022.safetensors",
107
+ "model.layers.11.self_attn.linear_attn.weight": "model-00004-of-00022.safetensors",
108
+ "model.layers.11.post_attention_layernorm.weight": "model-00004-of-00022.safetensors",
109
+ "model.layers.11.mlp.gate_proj.weight": "model-00004-of-00022.safetensors",
110
+ "model.layers.11.mlp.up_proj.weight": "model-00004-of-00022.safetensors",
111
+ "model.layers.11.mlp.down_proj.weight": "model-00004-of-00022.safetensors",
112
+ "model.layers.12.input_layernorm.weight": "model-00004-of-00022.safetensors",
113
+ "model.layers.12.self_attn.q_proj.weight": "model-00004-of-00022.safetensors",
114
+ "model.layers.12.self_attn.k_proj.weight": "model-00004-of-00022.safetensors",
115
+ "model.layers.12.self_attn.v_proj.weight": "model-00004-of-00022.safetensors",
116
+ "model.layers.12.self_attn.o_proj.weight": "model-00004-of-00022.safetensors",
117
+ "model.layers.12.post_attention_layernorm.weight": "model-00004-of-00022.safetensors",
118
+ "model.layers.12.mlp.gate_proj.weight": "model-00004-of-00022.safetensors",
119
+ "model.layers.12.mlp.up_proj.weight": "model-00004-of-00022.safetensors",
120
+ "model.layers.12.mlp.down_proj.weight": "model-00004-of-00022.safetensors",
121
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00022.safetensors",
122
+ "model.layers.13.self_attn.q_proj.weight": "model-00004-of-00022.safetensors",
123
+ "model.layers.13.self_attn.k_proj.weight": "model-00004-of-00022.safetensors",
124
+ "model.layers.13.self_attn.v_proj.weight": "model-00004-of-00022.safetensors",
125
+ "model.layers.13.self_attn.o_proj.weight": "model-00004-of-00022.safetensors",
126
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00022.safetensors",
127
+ "model.layers.13.mlp.gate_proj.weight": "model-00004-of-00022.safetensors",
128
+ "model.layers.13.mlp.up_proj.weight": "model-00004-of-00022.safetensors",
129
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00022.safetensors",
130
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00022.safetensors",
131
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00022.safetensors",
132
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00022.safetensors",
133
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00022.safetensors",
134
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00022.safetensors",
135
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00022.safetensors",
136
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00022.safetensors",
137
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00022.safetensors",
138
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00022.safetensors",
139
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00022.safetensors",
140
+ "model.layers.15.self_attn.linear_attn.weight": "model-00004-of-00022.safetensors",
141
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00022.safetensors",
142
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00022.safetensors",
143
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00022.safetensors",
144
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00022.safetensors",
145
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00022.safetensors",
146
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00022.safetensors",
147
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00022.safetensors",
148
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00022.safetensors",
149
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00022.safetensors",
150
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00022.safetensors",
151
+ "model.layers.16.mlp.gate_proj.weight": "model-00005-of-00022.safetensors",
152
+ "model.layers.16.mlp.up_proj.weight": "model-00005-of-00022.safetensors",
153
+ "model.layers.16.mlp.down_proj.weight": "model-00005-of-00022.safetensors",
154
+ "model.layers.17.input_layernorm.weight": "model-00005-of-00022.safetensors",
155
+ "model.layers.17.self_attn.q_proj.weight": "model-00005-of-00022.safetensors",
156
+ "model.layers.17.self_attn.k_proj.weight": "model-00005-of-00022.safetensors",
157
+ "model.layers.17.self_attn.v_proj.weight": "model-00005-of-00022.safetensors",
158
+ "model.layers.17.self_attn.o_proj.weight": "model-00005-of-00022.safetensors",
159
+ "model.layers.17.post_attention_layernorm.weight": "model-00005-of-00022.safetensors",
160
+ "model.layers.17.mlp.gate_proj.weight": "model-00005-of-00022.safetensors",
161
+ "model.layers.17.mlp.up_proj.weight": "model-00005-of-00022.safetensors",
162
+ "model.layers.17.mlp.down_proj.weight": "model-00005-of-00022.safetensors",
163
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00022.safetensors",
164
+ "model.layers.18.self_attn.q_proj.weight": "model-00005-of-00022.safetensors",
165
+ "model.layers.18.self_attn.k_proj.weight": "model-00005-of-00022.safetensors",
166
+ "model.layers.18.self_attn.v_proj.weight": "model-00005-of-00022.safetensors",
167
+ "model.layers.18.self_attn.o_proj.weight": "model-00005-of-00022.safetensors",
168
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00022.safetensors",
169
+ "model.layers.18.mlp.gate_proj.weight": "model-00005-of-00022.safetensors",
170
+ "model.layers.18.mlp.up_proj.weight": "model-00005-of-00022.safetensors",
171
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00022.safetensors",
172
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00022.safetensors",
173
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00022.safetensors",
174
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00022.safetensors",
175
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00022.safetensors",
176
+ "model.layers.19.self_attn.o_proj.weight": "model-00006-of-00022.safetensors",
177
+ "model.layers.19.post_attention_layernorm.weight": "model-00006-of-00022.safetensors",
178
+ "model.layers.19.mlp.gate_proj.weight": "model-00006-of-00022.safetensors",
179
+ "model.layers.19.mlp.up_proj.weight": "model-00006-of-00022.safetensors",
180
+ "model.layers.19.mlp.down_proj.weight": "model-00006-of-00022.safetensors",
181
+ "model.layers.20.input_layernorm.weight": "model-00006-of-00022.safetensors",
182
+ "model.layers.20.self_attn.q_proj.weight": "model-00006-of-00022.safetensors",
183
+ "model.layers.20.self_attn.k_proj.weight": "model-00006-of-00022.safetensors",
184
+ "model.layers.20.self_attn.v_proj.weight": "model-00006-of-00022.safetensors",
185
+ "model.layers.20.self_attn.o_proj.weight": "model-00006-of-00022.safetensors",
186
+ "model.layers.20.post_attention_layernorm.weight": "model-00006-of-00022.safetensors",
187
+ "model.layers.20.mlp.gate_proj.weight": "model-00006-of-00022.safetensors",
188
+ "model.layers.20.mlp.up_proj.weight": "model-00006-of-00022.safetensors",
189
+ "model.layers.20.mlp.down_proj.weight": "model-00006-of-00022.safetensors",
190
+ "model.layers.21.input_layernorm.weight": "model-00006-of-00022.safetensors",
191
+ "model.layers.21.self_attn.q_proj.weight": "model-00006-of-00022.safetensors",
192
+ "model.layers.21.self_attn.k_proj.weight": "model-00006-of-00022.safetensors",
193
+ "model.layers.21.self_attn.v_proj.weight": "model-00006-of-00022.safetensors",
194
+ "model.layers.21.self_attn.o_proj.weight": "model-00006-of-00022.safetensors",
195
+ "model.layers.21.post_attention_layernorm.weight": "model-00006-of-00022.safetensors",
196
+ "model.layers.21.mlp.gate_proj.weight": "model-00006-of-00022.safetensors",
197
+ "model.layers.21.mlp.up_proj.weight": "model-00006-of-00022.safetensors",
198
+ "model.layers.21.mlp.down_proj.weight": "model-00006-of-00022.safetensors",
199
+ "model.layers.22.input_layernorm.weight": "model-00006-of-00022.safetensors",
200
+ "model.layers.22.self_attn.q_proj.weight": "model-00007-of-00022.safetensors",
201
+ "model.layers.22.self_attn.k_proj.weight": "model-00007-of-00022.safetensors",
202
+ "model.layers.22.self_attn.v_proj.weight": "model-00007-of-00022.safetensors",
203
+ "model.layers.22.self_attn.o_proj.weight": "model-00007-of-00022.safetensors",
204
+ "model.layers.22.post_attention_layernorm.weight": "model-00007-of-00022.safetensors",
205
+ "model.layers.22.mlp.gate_proj.weight": "model-00007-of-00022.safetensors",
206
+ "model.layers.22.mlp.up_proj.weight": "model-00007-of-00022.safetensors",
207
+ "model.layers.22.mlp.down_proj.weight": "model-00007-of-00022.safetensors",
208
+ "model.layers.23.input_layernorm.weight": "model-00007-of-00022.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00007-of-00022.safetensors",
210
+ "model.layers.23.self_attn.k_proj.weight": "model-00007-of-00022.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00007-of-00022.safetensors",
212
+ "model.layers.23.self_attn.o_proj.weight": "model-00007-of-00022.safetensors",
213
+ "model.layers.23.post_attention_layernorm.weight": "model-00007-of-00022.safetensors",
214
+ "model.layers.23.mlp.gate_proj.weight": "model-00007-of-00022.safetensors",
215
+ "model.layers.23.mlp.up_proj.weight": "model-00007-of-00022.safetensors",
216
+ "model.layers.23.mlp.down_proj.weight": "model-00007-of-00022.safetensors",
217
+ "model.layers.24.input_layernorm.weight": "model-00007-of-00022.safetensors",
218
+ "model.layers.24.self_attn.q_proj.weight": "model-00007-of-00022.safetensors",
219
+ "model.layers.24.self_attn.k_proj.weight": "model-00007-of-00022.safetensors",
220
+ "model.layers.24.self_attn.v_proj.weight": "model-00007-of-00022.safetensors",
221
+ "model.layers.24.self_attn.o_proj.weight": "model-00007-of-00022.safetensors",
222
+ "model.layers.24.post_attention_layernorm.weight": "model-00007-of-00022.safetensors",
223
+ "model.layers.24.mlp.gate_proj.weight": "model-00007-of-00022.safetensors",
224
+ "model.layers.24.mlp.up_proj.weight": "model-00007-of-00022.safetensors",
225
+ "model.layers.24.mlp.down_proj.weight": "model-00008-of-00022.safetensors",
226
+ "model.layers.25.input_layernorm.weight": "model-00008-of-00022.safetensors",
227
+ "model.layers.25.self_attn.q_proj.weight": "model-00008-of-00022.safetensors",
228
+ "model.layers.25.self_attn.k_proj.weight": "model-00008-of-00022.safetensors",
229
+ "model.layers.25.self_attn.v_proj.weight": "model-00008-of-00022.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00008-of-00022.safetensors",
231
+ "model.layers.25.post_attention_layernorm.weight": "model-00008-of-00022.safetensors",
232
+ "model.layers.25.mlp.gate_proj.weight": "model-00008-of-00022.safetensors",
233
+ "model.layers.25.mlp.up_proj.weight": "model-00008-of-00022.safetensors",
234
+ "model.layers.25.mlp.down_proj.weight": "model-00008-of-00022.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00008-of-00022.safetensors",
236
+ "model.layers.26.self_attn.q_proj.weight": "model-00008-of-00022.safetensors",
237
+ "model.layers.26.self_attn.k_proj.weight": "model-00008-of-00022.safetensors",
238
+ "model.layers.26.self_attn.v_proj.weight": "model-00008-of-00022.safetensors",
239
+ "model.layers.26.self_attn.o_proj.weight": "model-00008-of-00022.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00008-of-00022.safetensors",
241
+ "model.layers.26.mlp.gate_proj.weight": "model-00008-of-00022.safetensors",
242
+ "model.layers.26.mlp.up_proj.weight": "model-00008-of-00022.safetensors",
243
+ "model.layers.26.mlp.down_proj.weight": "model-00008-of-00022.safetensors",
244
+ "model.layers.27.input_layernorm.weight": "model-00008-of-00022.safetensors",
245
+ "model.layers.27.self_attn.q_proj.weight": "model-00008-of-00022.safetensors",
246
+ "model.layers.27.self_attn.k_proj.weight": "model-00008-of-00022.safetensors",
247
+ "model.layers.27.self_attn.v_proj.weight": "model-00008-of-00022.safetensors",
248
+ "model.layers.27.self_attn.o_proj.weight": "model-00008-of-00022.safetensors",
249
+ "model.layers.27.post_attention_layernorm.weight": "model-00008-of-00022.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00008-of-00022.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00009-of-00022.safetensors",
252
+ "model.layers.27.mlp.down_proj.weight": "model-00009-of-00022.safetensors",
253
+ "model.layers.28.input_layernorm.weight": "model-00009-of-00022.safetensors",
254
+ "model.layers.28.self_attn.q_proj.weight": "model-00009-of-00022.safetensors",
255
+ "model.layers.28.self_attn.k_proj.weight": "model-00009-of-00022.safetensors",
256
+ "model.layers.28.self_attn.v_proj.weight": "model-00009-of-00022.safetensors",
257
+ "model.layers.28.self_attn.o_proj.weight": "model-00009-of-00022.safetensors",
258
+ "model.layers.28.post_attention_layernorm.weight": "model-00009-of-00022.safetensors",
259
+ "model.layers.28.mlp.gate_proj.weight": "model-00009-of-00022.safetensors",
260
+ "model.layers.28.mlp.up_proj.weight": "model-00009-of-00022.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00009-of-00022.safetensors",
262
+ "model.layers.29.input_layernorm.weight": "model-00009-of-00022.safetensors",
263
+ "model.layers.29.self_attn.q_proj.weight": "model-00009-of-00022.safetensors",
264
+ "model.layers.29.self_attn.k_proj.weight": "model-00009-of-00022.safetensors",
265
+ "model.layers.29.self_attn.v_proj.weight": "model-00009-of-00022.safetensors",
266
+ "model.layers.29.self_attn.o_proj.weight": "model-00009-of-00022.safetensors",
267
+ "model.layers.29.post_attention_layernorm.weight": "model-00009-of-00022.safetensors",
268
+ "model.layers.29.mlp.gate_proj.weight": "model-00009-of-00022.safetensors",
269
+ "model.layers.29.mlp.up_proj.weight": "model-00009-of-00022.safetensors",
270
+ "model.layers.29.mlp.down_proj.weight": "model-00009-of-00022.safetensors",
271
+ "model.layers.30.input_layernorm.weight": "model-00009-of-00022.safetensors",
272
+ "model.layers.30.self_attn.q_proj.weight": "model-00009-of-00022.safetensors",
273
+ "model.layers.30.self_attn.k_proj.weight": "model-00009-of-00022.safetensors",
274
+ "model.layers.30.self_attn.v_proj.weight": "model-00009-of-00022.safetensors",
275
+ "model.layers.30.self_attn.o_proj.weight": "model-00009-of-00022.safetensors",
276
+ "model.layers.30.post_attention_layernorm.weight": "model-00009-of-00022.safetensors",
277
+ "model.layers.30.mlp.gate_proj.weight": "model-00010-of-00022.safetensors",
278
+ "model.layers.30.mlp.up_proj.weight": "model-00010-of-00022.safetensors",
279
+ "model.layers.30.mlp.down_proj.weight": "model-00010-of-00022.safetensors",
280
+ "model.layers.31.input_layernorm.weight": "model-00010-of-00022.safetensors",
281
+ "model.layers.31.self_attn.q_proj.weight": "model-00010-of-00022.safetensors",
282
+ "model.layers.31.self_attn.k_proj.weight": "model-00010-of-00022.safetensors",
283
+ "model.layers.31.self_attn.v_proj.weight": "model-00010-of-00022.safetensors",
284
+ "model.layers.31.self_attn.o_proj.weight": "model-00010-of-00022.safetensors",
285
+ "model.layers.31.post_attention_layernorm.weight": "model-00010-of-00022.safetensors",
286
+ "model.layers.31.mlp.gate_proj.weight": "model-00010-of-00022.safetensors",
287
+ "model.layers.31.mlp.up_proj.weight": "model-00010-of-00022.safetensors",
288
+ "model.layers.31.mlp.down_proj.weight": "model-00010-of-00022.safetensors",
289
+ "model.layers.32.input_layernorm.weight": "model-00010-of-00022.safetensors",
290
+ "model.layers.32.self_attn.q_proj.weight": "model-00010-of-00022.safetensors",
291
+ "model.layers.32.self_attn.k_proj.weight": "model-00010-of-00022.safetensors",
292
+ "model.layers.32.self_attn.v_proj.weight": "model-00010-of-00022.safetensors",
293
+ "model.layers.32.self_attn.o_proj.weight": "model-00010-of-00022.safetensors",
294
+ "model.layers.32.post_attention_layernorm.weight": "model-00010-of-00022.safetensors",
295
+ "model.layers.32.mlp.gate_proj.weight": "model-00010-of-00022.safetensors",
296
+ "model.layers.32.mlp.up_proj.weight": "model-00010-of-00022.safetensors",
297
+ "model.layers.32.mlp.down_proj.weight": "model-00010-of-00022.safetensors",
298
+ "model.layers.33.input_layernorm.weight": "model-00010-of-00022.safetensors",
299
+ "model.layers.33.self_attn.q_proj.weight": "model-00010-of-00022.safetensors",
300
+ "model.layers.33.self_attn.k_proj.weight": "model-00010-of-00022.safetensors",
301
+ "model.layers.33.self_attn.v_proj.weight": "model-00010-of-00022.safetensors",
302
+ "model.layers.33.self_attn.o_proj.weight": "model-00011-of-00022.safetensors",
303
+ "model.layers.33.post_attention_layernorm.weight": "model-00011-of-00022.safetensors",
304
+ "model.layers.33.mlp.gate_proj.weight": "model-00011-of-00022.safetensors",
305
+ "model.layers.33.mlp.up_proj.weight": "model-00011-of-00022.safetensors",
306
+ "model.layers.33.mlp.down_proj.weight": "model-00011-of-00022.safetensors",
307
+ "model.layers.34.input_layernorm.weight": "model-00011-of-00022.safetensors",
308
+ "model.layers.34.self_attn.q_proj.weight": "model-00011-of-00022.safetensors",
309
+ "model.layers.34.self_attn.k_proj.weight": "model-00011-of-00022.safetensors",
310
+ "model.layers.34.self_attn.v_proj.weight": "model-00011-of-00022.safetensors",
311
+ "model.layers.34.self_attn.o_proj.weight": "model-00011-of-00022.safetensors",
312
+ "model.layers.34.post_attention_layernorm.weight": "model-00011-of-00022.safetensors",
313
+ "model.layers.34.mlp.gate_proj.weight": "model-00011-of-00022.safetensors",
314
+ "model.layers.34.mlp.up_proj.weight": "model-00011-of-00022.safetensors",
315
+ "model.layers.34.mlp.down_proj.weight": "model-00011-of-00022.safetensors",
316
+ "model.layers.35.input_layernorm.weight": "model-00011-of-00022.safetensors",
317
+ "model.layers.35.self_attn.q_proj.weight": "model-00011-of-00022.safetensors",
318
+ "model.layers.35.self_attn.k_proj.weight": "model-00011-of-00022.safetensors",
319
+ "model.layers.35.self_attn.v_proj.weight": "model-00011-of-00022.safetensors",
320
+ "model.layers.35.self_attn.o_proj.weight": "model-00011-of-00022.safetensors",
321
+ "model.layers.35.post_attention_layernorm.weight": "model-00011-of-00022.safetensors",
322
+ "model.layers.35.mlp.gate_proj.weight": "model-00011-of-00022.safetensors",
323
+ "model.layers.35.mlp.up_proj.weight": "model-00011-of-00022.safetensors",
324
+ "model.layers.35.mlp.down_proj.weight": "model-00011-of-00022.safetensors",
325
+ "model.layers.36.input_layernorm.weight": "model-00011-of-00022.safetensors",
326
+ "model.layers.36.self_attn.q_proj.weight": "model-00012-of-00022.safetensors",
327
+ "model.layers.36.self_attn.k_proj.weight": "model-00012-of-00022.safetensors",
328
+ "model.layers.36.self_attn.v_proj.weight": "model-00012-of-00022.safetensors",
329
+ "model.layers.36.self_attn.o_proj.weight": "model-00012-of-00022.safetensors",
330
+ "model.layers.36.post_attention_layernorm.weight": "model-00012-of-00022.safetensors",
331
+ "model.layers.36.mlp.gate_proj.weight": "model-00012-of-00022.safetensors",
332
+ "model.layers.36.mlp.up_proj.weight": "model-00012-of-00022.safetensors",
333
+ "model.layers.36.mlp.down_proj.weight": "model-00012-of-00022.safetensors",
334
+ "model.layers.37.input_layernorm.weight": "model-00012-of-00022.safetensors",
335
+ "model.layers.37.self_attn.q_proj.weight": "model-00012-of-00022.safetensors",
336
+ "model.layers.37.self_attn.k_proj.weight": "model-00012-of-00022.safetensors",
337
+ "model.layers.37.self_attn.v_proj.weight": "model-00012-of-00022.safetensors",
338
+ "model.layers.37.self_attn.o_proj.weight": "model-00012-of-00022.safetensors",
339
+ "model.layers.37.post_attention_layernorm.weight": "model-00012-of-00022.safetensors",
340
+ "model.layers.37.mlp.gate_proj.weight": "model-00012-of-00022.safetensors",
341
+ "model.layers.37.mlp.up_proj.weight": "model-00012-of-00022.safetensors",
342
+ "model.layers.37.mlp.down_proj.weight": "model-00012-of-00022.safetensors",
343
+ "model.layers.38.input_layernorm.weight": "model-00012-of-00022.safetensors",
344
+ "model.layers.38.self_attn.q_proj.weight": "model-00012-of-00022.safetensors",
345
+ "model.layers.38.self_attn.k_proj.weight": "model-00012-of-00022.safetensors",
346
+ "model.layers.38.self_attn.v_proj.weight": "model-00012-of-00022.safetensors",
347
+ "model.layers.38.self_attn.o_proj.weight": "model-00012-of-00022.safetensors",
348
+ "model.layers.38.post_attention_layernorm.weight": "model-00012-of-00022.safetensors",
349
+ "model.layers.38.mlp.gate_proj.weight": "model-00012-of-00022.safetensors",
350
+ "model.layers.38.mlp.up_proj.weight": "model-00012-of-00022.safetensors",
351
+ "model.layers.38.mlp.down_proj.weight": "model-00013-of-00022.safetensors",
352
+ "model.layers.39.input_layernorm.weight": "model-00013-of-00022.safetensors",
353
+ "model.layers.39.self_attn.q_proj.weight": "model-00013-of-00022.safetensors",
354
+ "model.layers.39.self_attn.k_proj.weight": "model-00013-of-00022.safetensors",
355
+ "model.layers.39.self_attn.v_proj.weight": "model-00013-of-00022.safetensors",
356
+ "model.layers.39.self_attn.o_proj.weight": "model-00013-of-00022.safetensors",
357
+ "model.layers.39.post_attention_layernorm.weight": "model-00013-of-00022.safetensors",
358
+ "model.layers.39.mlp.gate_proj.weight": "model-00013-of-00022.safetensors",
359
+ "model.layers.39.mlp.up_proj.weight": "model-00013-of-00022.safetensors",
360
+ "model.layers.39.mlp.down_proj.weight": "model-00013-of-00022.safetensors",
361
+ "model.layers.40.input_layernorm.weight": "model-00013-of-00022.safetensors",
362
+ "model.layers.40.self_attn.q_proj.weight": "model-00013-of-00022.safetensors",
363
+ "model.layers.40.self_attn.k_proj.weight": "model-00013-of-00022.safetensors",
364
+ "model.layers.40.self_attn.v_proj.weight": "model-00013-of-00022.safetensors",
365
+ "model.layers.40.self_attn.o_proj.weight": "model-00013-of-00022.safetensors",
366
+ "model.layers.40.post_attention_layernorm.weight": "model-00013-of-00022.safetensors",
367
+ "model.layers.40.mlp.gate_proj.weight": "model-00013-of-00022.safetensors",
368
+ "model.layers.40.mlp.up_proj.weight": "model-00013-of-00022.safetensors",
369
+ "model.layers.40.mlp.down_proj.weight": "model-00013-of-00022.safetensors",
370
+ "model.layers.41.input_layernorm.weight": "model-00013-of-00022.safetensors",
371
+ "model.layers.41.self_attn.q_proj.weight": "model-00013-of-00022.safetensors",
372
+ "model.layers.41.self_attn.k_proj.weight": "model-00013-of-00022.safetensors",
373
+ "model.layers.41.self_attn.v_proj.weight": "model-00013-of-00022.safetensors",
374
+ "model.layers.41.self_attn.o_proj.weight": "model-00013-of-00022.safetensors",
375
+ "model.layers.41.post_attention_layernorm.weight": "model-00013-of-00022.safetensors",
376
+ "model.layers.41.mlp.gate_proj.weight": "model-00013-of-00022.safetensors",
377
+ "model.layers.41.mlp.up_proj.weight": "model-00014-of-00022.safetensors",
378
+ "model.layers.41.mlp.down_proj.weight": "model-00014-of-00022.safetensors",
379
+ "model.layers.42.input_layernorm.weight": "model-00014-of-00022.safetensors",
380
+ "model.layers.42.self_attn.linear_attn.weight": "model-00014-of-00022.safetensors",
381
+ "model.layers.42.post_attention_layernorm.weight": "model-00014-of-00022.safetensors",
382
+ "model.layers.42.mlp.gate_proj.weight": "model-00014-of-00022.safetensors",
383
+ "model.layers.42.mlp.up_proj.weight": "model-00014-of-00022.safetensors",
384
+ "model.layers.42.mlp.down_proj.weight": "model-00014-of-00022.safetensors",
385
+ "model.layers.43.input_layernorm.weight": "model-00014-of-00022.safetensors",
386
+ "model.layers.43.self_attn.q_proj.weight": "model-00014-of-00022.safetensors",
387
+ "model.layers.43.self_attn.k_proj.weight": "model-00014-of-00022.safetensors",
388
+ "model.layers.43.self_attn.v_proj.weight": "model-00014-of-00022.safetensors",
389
+ "model.layers.43.self_attn.o_proj.weight": "model-00014-of-00022.safetensors",
390
+ "model.layers.43.post_attention_layernorm.weight": "model-00014-of-00022.safetensors",
391
+ "model.layers.43.mlp.gate_proj.weight": "model-00014-of-00022.safetensors",
392
+ "model.layers.43.mlp.up_proj.weight": "model-00014-of-00022.safetensors",
393
+ "model.layers.43.mlp.down_proj.weight": "model-00014-of-00022.safetensors",
394
+ "model.layers.44.input_layernorm.weight": "model-00014-of-00022.safetensors",
395
+ "model.layers.44.self_attn.q_proj.weight": "model-00014-of-00022.safetensors",
396
+ "model.layers.44.self_attn.k_proj.weight": "model-00014-of-00022.safetensors",
397
+ "model.layers.44.self_attn.v_proj.weight": "model-00014-of-00022.safetensors",
398
+ "model.layers.44.self_attn.o_proj.weight": "model-00014-of-00022.safetensors",
399
+ "model.layers.44.post_attention_layernorm.weight": "model-00014-of-00022.safetensors",
400
+ "model.layers.44.mlp.gate_proj.weight": "model-00014-of-00022.safetensors",
401
+ "model.layers.44.mlp.up_proj.weight": "model-00014-of-00022.safetensors",
402
+ "model.layers.44.mlp.down_proj.weight": "model-00015-of-00022.safetensors",
403
+ "model.layers.45.input_layernorm.weight": "model-00015-of-00022.safetensors",
404
+ "model.layers.45.self_attn.linear_attn.weight": "model-00015-of-00022.safetensors",
405
+ "model.layers.45.post_attention_layernorm.weight": "model-00015-of-00022.safetensors",
406
+ "model.layers.45.mlp.gate_proj.weight": "model-00015-of-00022.safetensors",
407
+ "model.layers.45.mlp.up_proj.weight": "model-00015-of-00022.safetensors",
408
+ "model.layers.45.mlp.down_proj.weight": "model-00015-of-00022.safetensors",
409
+ "model.layers.46.input_layernorm.weight": "model-00015-of-00022.safetensors",
410
+ "model.layers.46.self_attn.linear_attn.weight": "model-00015-of-00022.safetensors",
411
+ "model.layers.46.post_attention_layernorm.weight": "model-00015-of-00022.safetensors",
412
+ "model.layers.46.mlp.gate_proj.weight": "model-00015-of-00022.safetensors",
413
+ "model.layers.46.mlp.up_proj.weight": "model-00015-of-00022.safetensors",
414
+ "model.layers.46.mlp.down_proj.weight": "model-00015-of-00022.safetensors",
415
+ "model.layers.47.input_layernorm.weight": "model-00015-of-00022.safetensors",
416
+ "model.layers.47.self_attn.linear_attn.weight": "model-00015-of-00022.safetensors",
417
+ "model.layers.47.post_attention_layernorm.weight": "model-00015-of-00022.safetensors",
418
+ "model.layers.47.mlp.gate_proj.weight": "model-00015-of-00022.safetensors",
419
+ "model.layers.47.mlp.up_proj.weight": "model-00015-of-00022.safetensors",
420
+ "model.layers.47.mlp.down_proj.weight": "model-00015-of-00022.safetensors",
421
+ "model.layers.48.input_layernorm.weight": "model-00015-of-00022.safetensors",
422
+ "model.layers.48.self_attn.linear_attn.weight": "model-00015-of-00022.safetensors",
423
+ "model.layers.48.post_attention_layernorm.weight": "model-00015-of-00022.safetensors",
424
+ "model.layers.48.mlp.gate_proj.weight": "model-00015-of-00022.safetensors",
425
+ "model.layers.48.mlp.up_proj.weight": "model-00015-of-00022.safetensors",
426
+ "model.layers.48.mlp.down_proj.weight": "model-00015-of-00022.safetensors",
427
+ "model.layers.49.input_layernorm.weight": "model-00015-of-00022.safetensors",
428
+ "model.layers.49.self_attn.linear_attn.weight": "model-00015-of-00022.safetensors",
429
+ "model.layers.49.post_attention_layernorm.weight": "model-00015-of-00022.safetensors",
430
+ "model.layers.49.mlp.gate_proj.weight": "model-00015-of-00022.safetensors",
431
+ "model.layers.49.mlp.up_proj.weight": "model-00016-of-00022.safetensors",
432
+ "model.layers.49.mlp.down_proj.weight": "model-00016-of-00022.safetensors",
433
+ "model.layers.50.post_attention_layernorm.weight": "model-00016-of-00022.safetensors",
434
+ "model.layers.50.mlp.gate_proj.weight": "model-00016-of-00022.safetensors",
435
+ "model.layers.50.mlp.up_proj.weight": "model-00016-of-00022.safetensors",
436
+ "model.layers.50.mlp.down_proj.weight": "model-00016-of-00022.safetensors",
437
+ "model.layers.51.input_layernorm.weight": "model-00016-of-00022.safetensors",
438
+ "model.layers.51.self_attn.linear_attn.weight": "model-00016-of-00022.safetensors",
439
+ "model.layers.51.post_attention_layernorm.weight": "model-00016-of-00022.safetensors",
440
+ "model.layers.51.mlp.gate_proj.weight": "model-00016-of-00022.safetensors",
441
+ "model.layers.51.mlp.up_proj.weight": "model-00016-of-00022.safetensors",
442
+ "model.layers.51.mlp.down_proj.weight": "model-00016-of-00022.safetensors",
443
+ "model.layers.52.input_layernorm.weight": "model-00016-of-00022.safetensors",
444
+ "model.layers.52.self_attn.q_proj.weight": "model-00016-of-00022.safetensors",
445
+ "model.layers.52.self_attn.k_proj.weight": "model-00016-of-00022.safetensors",
446
+ "model.layers.52.self_attn.v_proj.weight": "model-00016-of-00022.safetensors",
447
+ "model.layers.52.self_attn.o_proj.weight": "model-00016-of-00022.safetensors",
448
+ "model.layers.52.post_attention_layernorm.weight": "model-00016-of-00022.safetensors",
449
+ "model.layers.52.mlp.gate_proj.weight": "model-00016-of-00022.safetensors",
450
+ "model.layers.52.mlp.up_proj.weight": "model-00016-of-00022.safetensors",
451
+ "model.layers.52.mlp.down_proj.weight": "model-00016-of-00022.safetensors",
452
+ "model.layers.53.post_attention_layernorm.weight": "model-00016-of-00022.safetensors",
453
+ "model.layers.53.mlp.gate_proj.weight": "model-00016-of-00022.safetensors",
454
+ "model.layers.53.mlp.up_proj.weight": "model-00016-of-00022.safetensors",
455
+ "model.layers.53.mlp.down_proj.weight": "model-00016-of-00022.safetensors",
456
+ "model.layers.54.input_layernorm.weight": "model-00016-of-00022.safetensors",
457
+ "model.layers.54.self_attn.linear_attn.weight": "model-00016-of-00022.safetensors",
458
+ "model.layers.54.post_attention_layernorm.weight": "model-00016-of-00022.safetensors",
459
+ "model.layers.54.mlp.gate_proj.weight": "model-00016-of-00022.safetensors",
460
+ "model.layers.54.mlp.up_proj.weight": "model-00016-of-00022.safetensors",
461
+ "model.layers.54.mlp.down_proj.weight": "model-00016-of-00022.safetensors",
462
+ "model.layers.55.post_attention_layernorm.weight": "model-00016-of-00022.safetensors",
463
+ "model.layers.55.mlp.gate_proj.weight": "model-00016-of-00022.safetensors",
464
+ "model.layers.55.mlp.up_proj.weight": "model-00016-of-00022.safetensors",
465
+ "model.layers.55.mlp.down_proj.weight": "model-00016-of-00022.safetensors",
466
+ "model.layers.56.input_layernorm.weight": "model-00016-of-00022.safetensors",
467
+ "model.layers.56.self_attn.q_proj.weight": "model-00016-of-00022.safetensors",
468
+ "model.layers.56.self_attn.k_proj.weight": "model-00016-of-00022.safetensors",
469
+ "model.layers.56.self_attn.v_proj.weight": "model-00016-of-00022.safetensors",
470
+ "model.layers.56.self_attn.o_proj.weight": "model-00016-of-00022.safetensors",
471
+ "model.layers.56.post_attention_layernorm.weight": "model-00016-of-00022.safetensors",
472
+ "model.layers.56.mlp.gate_proj.weight": "model-00016-of-00022.safetensors",
473
+ "model.layers.56.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
474
+ "model.layers.56.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
475
+ "model.layers.57.input_layernorm.weight": "model-00017-of-00022.safetensors",
476
+ "model.layers.57.self_attn.linear_attn.weight": "model-00017-of-00022.safetensors",
477
+ "model.layers.57.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
478
+ "model.layers.57.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
479
+ "model.layers.57.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
480
+ "model.layers.57.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
481
+ "model.layers.58.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
482
+ "model.layers.58.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
483
+ "model.layers.58.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
484
+ "model.layers.58.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
485
+ "model.layers.59.input_layernorm.weight": "model-00017-of-00022.safetensors",
486
+ "model.layers.59.self_attn.linear_attn.weight": "model-00017-of-00022.safetensors",
487
+ "model.layers.59.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
488
+ "model.layers.59.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
489
+ "model.layers.59.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
490
+ "model.layers.59.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
491
+ "model.layers.60.input_layernorm.weight": "model-00017-of-00022.safetensors",
492
+ "model.layers.60.self_attn.linear_attn.weight": "model-00017-of-00022.safetensors",
493
+ "model.layers.60.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
494
+ "model.layers.60.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
495
+ "model.layers.60.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
496
+ "model.layers.60.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
497
+ "model.layers.61.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
498
+ "model.layers.61.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
499
+ "model.layers.61.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
500
+ "model.layers.61.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
501
+ "model.layers.62.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
502
+ "model.layers.62.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
503
+ "model.layers.62.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
504
+ "model.layers.62.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
505
+ "model.layers.63.input_layernorm.weight": "model-00017-of-00022.safetensors",
506
+ "model.layers.63.self_attn.linear_attn.weight": "model-00017-of-00022.safetensors",
507
+ "model.layers.63.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
508
+ "model.layers.63.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
509
+ "model.layers.63.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
510
+ "model.layers.63.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
511
+ "model.layers.64.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
512
+ "model.layers.64.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
513
+ "model.layers.64.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
514
+ "model.layers.64.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
515
+ "model.layers.65.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
516
+ "model.layers.65.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
517
+ "model.layers.65.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
518
+ "model.layers.65.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
519
+ "model.layers.66.input_layernorm.weight": "model-00017-of-00022.safetensors",
520
+ "model.layers.66.self_attn.linear_attn.weight": "model-00017-of-00022.safetensors",
521
+ "model.layers.66.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
522
+ "model.layers.66.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
523
+ "model.layers.66.mlp.up_proj.weight": "model-00018-of-00022.safetensors",
524
+ "model.layers.66.mlp.down_proj.weight": "model-00018-of-00022.safetensors",
525
+ "model.layers.67.input_layernorm.weight": "model-00018-of-00022.safetensors",
526
+ "model.layers.67.self_attn.linear_attn.weight": "model-00018-of-00022.safetensors",
527
+ "model.layers.67.post_attention_layernorm.weight": "model-00018-of-00022.safetensors",
528
+ "model.layers.67.mlp.gate_proj.weight": "model-00018-of-00022.safetensors",
529
+ "model.layers.67.mlp.up_proj.weight": "model-00018-of-00022.safetensors",
530
+ "model.layers.67.mlp.down_proj.weight": "model-00018-of-00022.safetensors",
531
+ "model.layers.68.input_layernorm.weight": "model-00018-of-00022.safetensors",
532
+ "model.layers.68.self_attn.linear_attn.weight": "model-00018-of-00022.safetensors",
533
+ "model.layers.68.post_attention_layernorm.weight": "model-00018-of-00022.safetensors",
534
+ "model.layers.68.mlp.gate_proj.weight": "model-00018-of-00022.safetensors",
535
+ "model.layers.68.mlp.up_proj.weight": "model-00018-of-00022.safetensors",
536
+ "model.layers.68.mlp.down_proj.weight": "model-00018-of-00022.safetensors",
537
+ "model.layers.69.input_layernorm.weight": "model-00018-of-00022.safetensors",
538
+ "model.layers.69.self_attn.linear_attn.weight": "model-00018-of-00022.safetensors",
539
+ "model.layers.69.post_attention_layernorm.weight": "model-00018-of-00022.safetensors",
540
+ "model.layers.69.mlp.gate_proj.weight": "model-00018-of-00022.safetensors",
541
+ "model.layers.69.mlp.up_proj.weight": "model-00018-of-00022.safetensors",
542
+ "model.layers.69.mlp.down_proj.weight": "model-00018-of-00022.safetensors",
543
+ "model.layers.70.input_layernorm.weight": "model-00018-of-00022.safetensors",
544
+ "model.layers.70.self_attn.q_proj.weight": "model-00018-of-00022.safetensors",
545
+ "model.layers.70.self_attn.k_proj.weight": "model-00018-of-00022.safetensors",
546
+ "model.layers.70.self_attn.v_proj.weight": "model-00018-of-00022.safetensors",
547
+ "model.layers.70.self_attn.o_proj.weight": "model-00018-of-00022.safetensors",
548
+ "model.layers.70.post_attention_layernorm.weight": "model-00018-of-00022.safetensors",
549
+ "model.layers.70.mlp.gate_proj.weight": "model-00018-of-00022.safetensors",
550
+ "model.layers.70.mlp.up_proj.weight": "model-00018-of-00022.safetensors",
551
+ "model.layers.70.mlp.down_proj.weight": "model-00018-of-00022.safetensors",
552
+ "model.layers.71.input_layernorm.weight": "model-00018-of-00022.safetensors",
553
+ "model.layers.71.self_attn.q_proj.weight": "model-00018-of-00022.safetensors",
554
+ "model.layers.71.self_attn.k_proj.weight": "model-00018-of-00022.safetensors",
555
+ "model.layers.71.self_attn.v_proj.weight": "model-00018-of-00022.safetensors",
556
+ "model.layers.71.self_attn.o_proj.weight": "model-00018-of-00022.safetensors",
557
+ "model.layers.71.post_attention_layernorm.weight": "model-00018-of-00022.safetensors",
558
+ "model.layers.71.mlp.gate_proj.weight": "model-00018-of-00022.safetensors",
559
+ "model.layers.71.mlp.up_proj.weight": "model-00018-of-00022.safetensors",
560
+ "model.layers.71.mlp.down_proj.weight": "model-00019-of-00022.safetensors",
561
+ "model.layers.72.input_layernorm.weight": "model-00019-of-00022.safetensors",
562
+ "model.layers.72.self_attn.q_proj.weight": "model-00019-of-00022.safetensors",
563
+ "model.layers.72.self_attn.k_proj.weight": "model-00019-of-00022.safetensors",
564
+ "model.layers.72.self_attn.v_proj.weight": "model-00019-of-00022.safetensors",
565
+ "model.layers.72.self_attn.o_proj.weight": "model-00019-of-00022.safetensors",
566
+ "model.layers.72.post_attention_layernorm.weight": "model-00019-of-00022.safetensors",
567
+ "model.layers.72.mlp.gate_proj.weight": "model-00019-of-00022.safetensors",
568
+ "model.layers.72.mlp.up_proj.weight": "model-00019-of-00022.safetensors",
569
+ "model.layers.72.mlp.down_proj.weight": "model-00019-of-00022.safetensors",
570
+ "model.layers.73.input_layernorm.weight": "model-00019-of-00022.safetensors",
571
+ "model.layers.73.self_attn.q_proj.weight": "model-00019-of-00022.safetensors",
572
+ "model.layers.73.self_attn.k_proj.weight": "model-00019-of-00022.safetensors",
573
+ "model.layers.73.self_attn.v_proj.weight": "model-00019-of-00022.safetensors",
574
+ "model.layers.73.self_attn.o_proj.weight": "model-00019-of-00022.safetensors",
575
+ "model.layers.73.post_attention_layernorm.weight": "model-00019-of-00022.safetensors",
576
+ "model.layers.73.mlp.gate_proj.weight": "model-00019-of-00022.safetensors",
577
+ "model.layers.73.mlp.up_proj.weight": "model-00019-of-00022.safetensors",
578
+ "model.layers.73.mlp.down_proj.weight": "model-00019-of-00022.safetensors",
579
+ "model.layers.74.input_layernorm.weight": "model-00019-of-00022.safetensors",
580
+ "model.layers.74.self_attn.q_proj.weight": "model-00019-of-00022.safetensors",
581
+ "model.layers.74.self_attn.k_proj.weight": "model-00019-of-00022.safetensors",
582
+ "model.layers.74.self_attn.v_proj.weight": "model-00019-of-00022.safetensors",
583
+ "model.layers.74.self_attn.o_proj.weight": "model-00019-of-00022.safetensors",
584
+ "model.layers.74.post_attention_layernorm.weight": "model-00019-of-00022.safetensors",
585
+ "model.layers.74.mlp.gate_proj.weight": "model-00019-of-00022.safetensors",
586
+ "model.layers.74.mlp.up_proj.weight": "model-00020-of-00022.safetensors",
587
+ "model.layers.74.mlp.down_proj.weight": "model-00020-of-00022.safetensors",
588
+ "model.layers.75.input_layernorm.weight": "model-00020-of-00022.safetensors",
589
+ "model.layers.75.self_attn.q_proj.weight": "model-00020-of-00022.safetensors",
590
+ "model.layers.75.self_attn.k_proj.weight": "model-00020-of-00022.safetensors",
591
+ "model.layers.75.self_attn.v_proj.weight": "model-00020-of-00022.safetensors",
592
+ "model.layers.75.self_attn.o_proj.weight": "model-00020-of-00022.safetensors",
593
+ "model.layers.75.post_attention_layernorm.weight": "model-00020-of-00022.safetensors",
594
+ "model.layers.75.mlp.gate_proj.weight": "model-00020-of-00022.safetensors",
595
+ "model.layers.75.mlp.up_proj.weight": "model-00020-of-00022.safetensors",
596
+ "model.layers.75.mlp.down_proj.weight": "model-00020-of-00022.safetensors",
597
+ "model.layers.76.input_layernorm.weight": "model-00020-of-00022.safetensors",
598
+ "model.layers.76.self_attn.q_proj.weight": "model-00020-of-00022.safetensors",
599
+ "model.layers.76.self_attn.k_proj.weight": "model-00020-of-00022.safetensors",
600
+ "model.layers.76.self_attn.v_proj.weight": "model-00020-of-00022.safetensors",
601
+ "model.layers.76.self_attn.o_proj.weight": "model-00020-of-00022.safetensors",
602
+ "model.layers.76.post_attention_layernorm.weight": "model-00020-of-00022.safetensors",
603
+ "model.layers.76.mlp.gate_proj.weight": "model-00020-of-00022.safetensors",
604
+ "model.layers.76.mlp.up_proj.weight": "model-00020-of-00022.safetensors",
605
+ "model.layers.76.mlp.down_proj.weight": "model-00020-of-00022.safetensors",
606
+ "model.layers.77.input_layernorm.weight": "model-00020-of-00022.safetensors",
607
+ "model.layers.77.self_attn.q_proj.weight": "model-00020-of-00022.safetensors",
608
+ "model.layers.77.self_attn.k_proj.weight": "model-00020-of-00022.safetensors",
609
+ "model.layers.77.self_attn.v_proj.weight": "model-00020-of-00022.safetensors",
610
+ "model.layers.77.self_attn.o_proj.weight": "model-00020-of-00022.safetensors",
611
+ "model.layers.77.post_attention_layernorm.weight": "model-00020-of-00022.safetensors",
612
+ "model.layers.77.mlp.gate_proj.weight": "model-00021-of-00022.safetensors",
613
+ "model.layers.77.mlp.up_proj.weight": "model-00021-of-00022.safetensors",
614
+ "model.layers.77.mlp.down_proj.weight": "model-00021-of-00022.safetensors",
615
+ "model.layers.78.input_layernorm.weight": "model-00021-of-00022.safetensors",
616
+ "model.layers.78.self_attn.q_proj.weight": "model-00021-of-00022.safetensors",
617
+ "model.layers.78.self_attn.k_proj.weight": "model-00021-of-00022.safetensors",
618
+ "model.layers.78.self_attn.v_proj.weight": "model-00021-of-00022.safetensors",
619
+ "model.layers.78.self_attn.o_proj.weight": "model-00021-of-00022.safetensors",
620
+ "model.layers.78.post_attention_layernorm.weight": "model-00021-of-00022.safetensors",
621
+ "model.layers.78.mlp.gate_proj.weight": "model-00021-of-00022.safetensors",
622
+ "model.layers.78.mlp.up_proj.weight": "model-00021-of-00022.safetensors",
623
+ "model.layers.78.mlp.down_proj.weight": "model-00021-of-00022.safetensors",
624
+ "model.layers.79.input_layernorm.weight": "model-00021-of-00022.safetensors",
625
+ "model.layers.79.self_attn.q_proj.weight": "model-00021-of-00022.safetensors",
626
+ "model.layers.79.self_attn.k_proj.weight": "model-00021-of-00022.safetensors",
627
+ "model.layers.79.self_attn.v_proj.weight": "model-00021-of-00022.safetensors",
628
+ "model.layers.79.self_attn.o_proj.weight": "model-00021-of-00022.safetensors",
629
+ "model.layers.79.post_attention_layernorm.weight": "model-00021-of-00022.safetensors",
630
+ "model.layers.79.mlp.gate_proj.weight": "model-00021-of-00022.safetensors",
631
+ "model.layers.79.mlp.up_proj.weight": "model-00021-of-00022.safetensors",
632
+ "model.layers.79.mlp.down_proj.weight": "model-00021-of-00022.safetensors",
633
+ "model.norm.weight": "model-00021-of-00022.safetensors",
634
+ "lm_head.weight": "model-00022-of-00022.safetensors"
635
+ }
636
+ }
modeling_decilm.py ADDED
@@ -0,0 +1,1665 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 EleutherAI, HuggingFace Inc, Nvidia Corporation. All rights reserved.
3
+ #
4
+ # This code is based on the Llama modeling code by HuggingFace, which is in turn based on
5
+ # EleutherAI's GPT-NeoX library and the GPT-NeoX and OPT implementations in this library.
6
+ #
7
+ # Licensed under the Apache License, Version 2.0 (the "License");
8
+ # you may not use this file except in compliance with the License.
9
+ # You may obtain a copy of the License at
10
+ #
11
+ # http://www.apache.org/licenses/LICENSE-2.0
12
+ #
13
+ # Unless required by applicable law or agreed to in writing, software
14
+ # distributed under the License is distributed on an "AS IS" BASIS,
15
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
+ # See the License for the specific language governing permissions and
17
+ # limitations under the License.
18
+
19
+ import math
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
+ from transformers import GenerationConfig
28
+ from transformers.generation.utils import NEED_SETUP_CACHE_CLASSES_MAPPING
29
+ from transformers.modeling_utils import PreTrainedModel
30
+ from transformers.utils import (
31
+ add_start_docstrings,
32
+ add_start_docstrings_to_model_forward,
33
+ is_flash_attn_greater_or_equal_2_10,
34
+ logging,
35
+ replace_return_docstrings,
36
+ )
37
+ from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
38
+
39
+ from .configuration_decilm import DeciLMConfig, AttentionConfig, FFNConfig
40
+ from .transformers_4_44_2__activations import ACT2FN
41
+ from .transformers_4_44_2__cache_utils import Cache, StaticCache
42
+ from .transformers_4_44_2__modeling_attn_mask_utils import AttentionMaskConverter
43
+ from .transformers_4_44_2__modeling_flash_attention_utils_backward_compat import _flash_attention_forward
44
+ from .transformers_4_44_2__modeling_outputs import (
45
+ BaseModelOutputWithPast,
46
+ CausalLMOutputWithPast,
47
+ QuestionAnsweringModelOutput,
48
+ SequenceClassifierOutputWithPast,
49
+ TokenClassifierOutput,
50
+ )
51
+ from .transformers_4_44_2__modeling_rope_utils import ROPE_INIT_FUNCTIONS
52
+ from .transformers_4_44_2__pytorch_utils import ALL_LAYERNORM_LAYERS
53
+ from .variable_cache import VariableCache
54
+
55
+ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES[DeciLMConfig.model_type] = "DeciLMForCausalLM"
56
+ logger = logging.get_logger(__name__)
57
+
58
+ _CONFIG_FOR_DOC = "DeciLMConfig"
59
+
60
+
61
+ def _prepare_4d_causal_attention_mask_with_cache_position(
62
+ attention_mask: torch.Tensor,
63
+ sequence_length: int,
64
+ target_length: int,
65
+ dtype: torch.dtype,
66
+ device: torch.device,
67
+ min_dtype: float,
68
+ cache_position: torch.Tensor,
69
+ batch_size: int,
70
+ ):
71
+ """
72
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
73
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
74
+
75
+ Args:
76
+ attention_mask (`torch.Tensor`):
77
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
78
+ sequence_length (`int`):
79
+ The sequence length being processed.
80
+ target_length (`int`):
81
+ The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
82
+ dtype (`torch.dtype`):
83
+ The dtype to use for the 4D attention mask.
84
+ device (`torch.device`):
85
+ The device to plcae the 4D attention mask on.
86
+ min_dtype (`float`):
87
+ The minimum value representable with the dtype `dtype`.
88
+ cache_position (`torch.Tensor`):
89
+ Indices depicting the position of the input sequence tokens in the sequence.
90
+ batch_size (`torch.Tensor`):
91
+ Batch size.
92
+ """
93
+ if attention_mask is not None and attention_mask.dim() == 4:
94
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
95
+ causal_mask = attention_mask
96
+ else:
97
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
98
+ if sequence_length != 1:
99
+ causal_mask = torch.triu(causal_mask, diagonal=1)
100
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
101
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
102
+ if attention_mask is not None:
103
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
104
+ mask_length = attention_mask.shape[-1]
105
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
106
+ padding_mask = padding_mask == 0
107
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
108
+ padding_mask, min_dtype
109
+ )
110
+
111
+ return causal_mask
112
+
113
+
114
+ class DeciLMRMSNorm(nn.Module):
115
+ def __init__(self, hidden_size, eps=1e-6):
116
+ """
117
+ DeciLMRMSNorm is equivalent to T5LayerNorm
118
+ """
119
+ super().__init__()
120
+ self.weight = nn.Parameter(torch.ones(hidden_size))
121
+ self.variance_epsilon = eps
122
+
123
+ def forward(self, hidden_states):
124
+ input_dtype = hidden_states.dtype
125
+ hidden_states = hidden_states.to(torch.float32)
126
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
127
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
128
+ return self.weight * hidden_states.to(input_dtype)
129
+
130
+ def extra_repr(self):
131
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
132
+
133
+
134
+ ALL_LAYERNORM_LAYERS.append(DeciLMRMSNorm)
135
+
136
+
137
+ class DeciLMRotaryEmbedding(nn.Module):
138
+ def __init__(
139
+ self,
140
+ dim=None,
141
+ max_position_embeddings=2048,
142
+ base=10000,
143
+ device=None,
144
+ scaling_factor=1.0,
145
+ rope_type="default",
146
+ config: Optional[DeciLMConfig] = None,
147
+ ):
148
+ super().__init__()
149
+ # TODO (joao): remove the `if` below, only used for BC
150
+ self.rope_kwargs = {}
151
+ if config is None:
152
+ logger.warning_once(
153
+ "`DeciLMRotaryEmbedding` can now be fully parameterized by passing the model config through the "
154
+ "`config` argument. All other arguments will be removed in v4.45"
155
+ )
156
+ self.rope_kwargs = {
157
+ "rope_type": rope_type,
158
+ "factor": scaling_factor,
159
+ "dim": dim,
160
+ "base": base,
161
+ "max_position_embeddings": max_position_embeddings,
162
+ }
163
+ self.rope_type = rope_type
164
+ self.max_seq_len_cached = max_position_embeddings
165
+ self.original_max_seq_len = max_position_embeddings
166
+ else:
167
+ # BC: "rope_type" was originally "type"
168
+ if config.rope_scaling is not None:
169
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
170
+ else:
171
+ self.rope_type = "default"
172
+ self.max_seq_len_cached = config.max_position_embeddings
173
+ self.original_max_seq_len = config.max_position_embeddings
174
+
175
+ self.config = config
176
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
177
+
178
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
179
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
180
+ self.original_inv_freq = self.inv_freq
181
+
182
+ def _dynamic_frequency_update(self, position_ids, device):
183
+ """
184
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
185
+ 1 - growing beyond the cached sequence length (allow scaling)
186
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
187
+ """
188
+ seq_len = torch.max(position_ids) + 1
189
+ if seq_len > self.max_seq_len_cached: # growth
190
+ inv_freq, self.attention_scaling = self.rope_init_fn(
191
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
192
+ )
193
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
194
+ self.max_seq_len_cached = seq_len
195
+
196
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
197
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
198
+ self.max_seq_len_cached = self.original_max_seq_len
199
+
200
+ @torch.no_grad()
201
+ def forward(self, x, position_ids):
202
+ if "dynamic" in self.rope_type:
203
+ self._dynamic_frequency_update(position_ids, device=x.device)
204
+
205
+ # Core RoPE block
206
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
207
+ position_ids_expanded = position_ids[:, None, :].float()
208
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
209
+ device_type = x.device.type
210
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
211
+ with torch.autocast(device_type=device_type, enabled=False):
212
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
213
+ emb = torch.cat((freqs, freqs), dim=-1)
214
+ cos = emb.cos()
215
+ sin = emb.sin()
216
+
217
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
218
+ cos = cos * self.attention_scaling
219
+ sin = sin * self.attention_scaling
220
+
221
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
222
+
223
+
224
+ class DeciLMLinearScalingRotaryEmbedding(DeciLMRotaryEmbedding):
225
+ """DeciLMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
226
+
227
+ def __init__(self, *args, **kwargs):
228
+ logger.warning_once(
229
+ "`DeciLMLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
230
+ "`DeciLMRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
231
+ )
232
+ kwargs["rope_type"] = "linear"
233
+ super().__init__(*args, **kwargs)
234
+
235
+
236
+ class DeciLMDynamicNTKScalingRotaryEmbedding(DeciLMRotaryEmbedding):
237
+ """DeciLMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
238
+
239
+ def __init__(self, *args, **kwargs):
240
+ logger.warning_once(
241
+ "`DeciLMDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
242
+ "`DeciLMRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
243
+ "__init__)."
244
+ )
245
+ kwargs["rope_type"] = "dynamic"
246
+ super().__init__(*args, **kwargs)
247
+
248
+
249
+ def rotate_half(x):
250
+ """Rotates half the hidden dims of the input."""
251
+ x1 = x[..., : x.shape[-1] // 2]
252
+ x2 = x[..., x.shape[-1] // 2:]
253
+ return torch.cat((-x2, x1), dim=-1)
254
+
255
+
256
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
257
+ """Applies Rotary Position Embedding to the query and key tensors.
258
+
259
+ Args:
260
+ q (`torch.Tensor`): The query tensor.
261
+ k (`torch.Tensor`): The key tensor.
262
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
263
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
264
+ position_ids (`torch.Tensor`, *optional*):
265
+ Deprecated and unused.
266
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
267
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
268
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
269
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
270
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
271
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
272
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
273
+ Returns:
274
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
275
+ """
276
+ cos = cos.unsqueeze(unsqueeze_dim)
277
+ sin = sin.unsqueeze(unsqueeze_dim)
278
+ q_embed = (q * cos) + (rotate_half(q) * sin)
279
+ k_embed = (k * cos) + (rotate_half(k) * sin)
280
+ return q_embed, k_embed
281
+
282
+
283
+ class DeciLMMLP(nn.Module):
284
+ def __init__(self,
285
+ config: DeciLMConfig,
286
+ ffn_config: FFNConfig,
287
+ ):
288
+ super().__init__()
289
+ self.config = config
290
+ self.hidden_size = config.hidden_size
291
+ self.intermediate_size = _ffn_mult_to_intermediate_size(
292
+ ffn_config.ffn_mult, config.hidden_size) # DeciLM-specific code
293
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
294
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
295
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
296
+ self.act_fn = ACT2FN[config.hidden_act]
297
+
298
+ def forward(self, x):
299
+ if self.config.pretraining_tp > 1:
300
+ slice = self.intermediate_size // self.config.pretraining_tp
301
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
302
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
303
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
304
+
305
+ gate_proj = torch.cat(
306
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
307
+ )
308
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
309
+
310
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
311
+ down_proj = [
312
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
313
+ ]
314
+ down_proj = sum(down_proj)
315
+ else:
316
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
317
+
318
+ return down_proj
319
+
320
+
321
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
322
+ """
323
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
324
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
325
+ """
326
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
327
+ if n_rep == 1:
328
+ return hidden_states
329
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
330
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
331
+
332
+
333
+ class DeciLMAttention(nn.Module):
334
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
335
+
336
+ def __init__(self,
337
+ config: DeciLMConfig,
338
+ attention_config: AttentionConfig,
339
+ layer_idx: Optional[int] = None,
340
+ ):
341
+ super().__init__()
342
+ self.config = config
343
+ self.layer_idx = layer_idx
344
+ if layer_idx is None:
345
+ logger.warning_once(
346
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
347
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
348
+ "when creating this class."
349
+ )
350
+
351
+ self.attention_dropout = config.attention_dropout
352
+ self.hidden_size = config.hidden_size
353
+ self.num_heads = config.num_attention_heads
354
+ self.head_dim = self.hidden_size // self.num_heads
355
+ self.num_key_value_groups = attention_config.n_heads_in_group # DeciLM-specific code
356
+ self.num_key_value_heads = self.num_heads // self.num_key_value_groups # DeciLM-specific code
357
+ self.max_position_embeddings = config.max_position_embeddings
358
+ self.rope_theta = config.rope_theta
359
+ self.is_causal = True
360
+
361
+ if (self.head_dim * self.num_heads) != self.hidden_size:
362
+ raise ValueError(
363
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
364
+ f" and `num_heads`: {self.num_heads})."
365
+ )
366
+
367
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
368
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
369
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
370
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
371
+
372
+ # TODO (joao): remove in v4.45 (RoPE is computed in the model, not in the decoder layers)
373
+ self.rotary_emb = DeciLMRotaryEmbedding(config=self.config)
374
+
375
+ def forward(
376
+ self,
377
+ hidden_states: torch.Tensor,
378
+ attention_mask: Optional[torch.Tensor] = None,
379
+ position_ids: Optional[torch.LongTensor] = None,
380
+ past_key_value: Optional[Cache] = None,
381
+ output_attentions: bool = False,
382
+ use_cache: bool = False,
383
+ cache_position: Optional[torch.LongTensor] = None,
384
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
385
+ **kwargs,
386
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
387
+ bsz, q_len, _ = hidden_states.size()
388
+ if self.config.pretraining_tp > 1:
389
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
390
+ query_slices = self.q_proj.weight.split(
391
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
392
+ )
393
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
394
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
395
+
396
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
397
+ query_states = torch.cat(query_states, dim=-1)
398
+
399
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
400
+ key_states = torch.cat(key_states, dim=-1)
401
+
402
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
403
+ value_states = torch.cat(value_states, dim=-1)
404
+
405
+ else:
406
+ query_states = self.q_proj(hidden_states)
407
+ key_states = self.k_proj(hidden_states)
408
+ value_states = self.v_proj(hidden_states)
409
+
410
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
411
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
412
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
413
+
414
+ if position_embeddings is None:
415
+ logger.warning_once(
416
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
417
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
418
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
419
+ "removed and `position_embeddings` will be mandatory."
420
+ )
421
+ cos, sin = self.rotary_emb(value_states, position_ids)
422
+ else:
423
+ cos, sin = position_embeddings
424
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
425
+
426
+ if past_key_value is not None:
427
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
428
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
429
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
430
+
431
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
432
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
433
+
434
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
435
+
436
+ if attention_mask is not None: # no matter the length, we just slice it
437
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
438
+ attn_weights = attn_weights + causal_mask
439
+
440
+ # upcast attention to fp32
441
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
442
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
443
+ attn_output = torch.matmul(attn_weights, value_states)
444
+
445
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
446
+ raise ValueError(
447
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
448
+ f" {attn_output.size()}"
449
+ )
450
+
451
+ attn_output = attn_output.transpose(1, 2).contiguous()
452
+
453
+ attn_output = attn_output.reshape(bsz, q_len, -1)
454
+
455
+ if self.config.pretraining_tp > 1:
456
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
457
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
458
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
459
+ else:
460
+ attn_output = self.o_proj(attn_output)
461
+
462
+ if not output_attentions:
463
+ attn_weights = None
464
+
465
+ return attn_output, attn_weights, past_key_value
466
+
467
+
468
+ class DeciLMFlashAttention2(DeciLMAttention):
469
+ """
470
+ DeciLM flash attention module. This module inherits from `DeciLMAttention` as the weights of the module stays
471
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
472
+ flash attention and deal with padding tokens in case the input contains any of them.
473
+ """
474
+
475
+ def __init__(self, *args, **kwargs):
476
+ super().__init__(*args, **kwargs)
477
+
478
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
479
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
480
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
481
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
482
+
483
+ def forward(
484
+ self,
485
+ hidden_states: torch.Tensor,
486
+ attention_mask: Optional[torch.LongTensor] = None,
487
+ position_ids: Optional[torch.LongTensor] = None,
488
+ past_key_value: Optional[Cache] = None,
489
+ output_attentions: bool = False,
490
+ use_cache: bool = False,
491
+ cache_position: Optional[torch.LongTensor] = None,
492
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
493
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
494
+ if isinstance(past_key_value, StaticCache):
495
+ raise ValueError(
496
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
497
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
498
+ )
499
+ output_attentions = False
500
+
501
+ bsz, q_len, _ = hidden_states.size()
502
+
503
+ query_states = self.q_proj(hidden_states)
504
+ key_states = self.k_proj(hidden_states)
505
+ value_states = self.v_proj(hidden_states)
506
+
507
+ # Flash attention requires the input to have the shape
508
+ # batch_size x seq_length x head_dim x hidden_dim
509
+ # therefore we just need to keep the original shape
510
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
511
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
512
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
513
+
514
+ if position_embeddings is None:
515
+ logger.warning_once(
516
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
517
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
518
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
519
+ "removed and `position_embeddings` will be mandatory."
520
+ )
521
+ cos, sin = self.rotary_emb(value_states, position_ids)
522
+ else:
523
+ cos, sin = position_embeddings
524
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
525
+
526
+ if past_key_value is not None:
527
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
528
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
529
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
530
+
531
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
532
+ # to be able to avoid many of these transpose/reshape/view.
533
+ query_states = query_states.transpose(1, 2)
534
+ key_states = key_states.transpose(1, 2)
535
+ value_states = value_states.transpose(1, 2)
536
+
537
+ dropout_rate = self.attention_dropout if self.training else 0.0
538
+
539
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
540
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
541
+ # cast them back in the correct dtype just to be sure everything works as expected.
542
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
543
+ # in fp32. (DeciLMRMSNorm handles it correctly)
544
+
545
+ input_dtype = query_states.dtype
546
+ if input_dtype == torch.float32:
547
+ if torch.is_autocast_enabled():
548
+ target_dtype = torch.get_autocast_gpu_dtype()
549
+ # Handle the case where the model is quantized
550
+ elif hasattr(self.config, "_pre_quantization_dtype"):
551
+ target_dtype = self.config._pre_quantization_dtype
552
+ else:
553
+ target_dtype = self.q_proj.weight.dtype
554
+
555
+ logger.warning_once(
556
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
557
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
558
+ f" {target_dtype}."
559
+ )
560
+
561
+ query_states = query_states.to(target_dtype)
562
+ key_states = key_states.to(target_dtype)
563
+ value_states = value_states.to(target_dtype)
564
+
565
+ attn_output = _flash_attention_forward(
566
+ query_states,
567
+ key_states,
568
+ value_states,
569
+ attention_mask,
570
+ q_len,
571
+ position_ids=position_ids,
572
+ dropout=dropout_rate,
573
+ sliding_window=getattr(self, "sliding_window", None),
574
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
575
+ is_causal=self.is_causal,
576
+ )
577
+
578
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
579
+ attn_output = self.o_proj(attn_output)
580
+
581
+ if not output_attentions:
582
+ attn_weights = None
583
+
584
+ return attn_output, attn_weights, past_key_value
585
+
586
+
587
+ class DeciLMSdpaAttention(DeciLMAttention):
588
+ """
589
+ DeciLM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
590
+ `DeciLMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
591
+ SDPA API.
592
+ """
593
+
594
+ # Adapted from DeciLMAttention.forward
595
+ def forward(
596
+ self,
597
+ hidden_states: torch.Tensor,
598
+ attention_mask: Optional[torch.Tensor] = None,
599
+ position_ids: Optional[torch.LongTensor] = None,
600
+ past_key_value: Optional[Cache] = None,
601
+ output_attentions: bool = False,
602
+ use_cache: bool = False,
603
+ cache_position: Optional[torch.LongTensor] = None,
604
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
605
+ **kwargs,
606
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
607
+ if output_attentions:
608
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
609
+ logger.warning_once(
610
+ "DeciLMModel is using DeciLMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
611
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
612
+ )
613
+ return super().forward(
614
+ hidden_states=hidden_states,
615
+ attention_mask=attention_mask,
616
+ position_ids=position_ids,
617
+ past_key_value=past_key_value,
618
+ output_attentions=output_attentions,
619
+ use_cache=use_cache,
620
+ cache_position=cache_position,
621
+ position_embeddings=position_embeddings,
622
+ )
623
+
624
+ bsz, q_len, _ = hidden_states.size()
625
+
626
+ query_states = self.q_proj(hidden_states)
627
+ key_states = self.k_proj(hidden_states)
628
+ value_states = self.v_proj(hidden_states)
629
+
630
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
631
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
632
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
633
+
634
+ if position_embeddings is None:
635
+ logger.warning_once(
636
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
637
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
638
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
639
+ "removed and `position_embeddings` will be mandatory."
640
+ )
641
+ cos, sin = self.rotary_emb(value_states, position_ids)
642
+ else:
643
+ cos, sin = position_embeddings
644
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
645
+
646
+ if past_key_value is not None:
647
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
648
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
649
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
650
+
651
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
652
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
653
+
654
+ causal_mask = attention_mask
655
+ if attention_mask is not None:
656
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
657
+
658
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
659
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
660
+ if query_states.device.type == "cuda" and causal_mask is not None:
661
+ query_states = query_states.contiguous()
662
+ key_states = key_states.contiguous()
663
+ value_states = value_states.contiguous()
664
+
665
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
666
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
667
+ is_causal = True if causal_mask is None and q_len > 1 else False
668
+
669
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
670
+ query_states,
671
+ key_states,
672
+ value_states,
673
+ attn_mask=causal_mask,
674
+ dropout_p=self.attention_dropout if self.training else 0.0,
675
+ is_causal=is_causal,
676
+ )
677
+
678
+ attn_output = attn_output.transpose(1, 2).contiguous()
679
+ attn_output = attn_output.view(bsz, q_len, -1)
680
+
681
+ attn_output = self.o_proj(attn_output)
682
+
683
+ return attn_output, None, past_key_value
684
+
685
+
686
+ DECILM_ATTENTION_CLASSES = {
687
+ "eager": DeciLMAttention,
688
+ "flash_attention_2": DeciLMFlashAttention2,
689
+ "sdpa": DeciLMSdpaAttention,
690
+ }
691
+
692
+
693
+ class DeciLMDecoderLayer(nn.Module):
694
+ # DeciLM-specific code
695
+ def __init__(self, config: DeciLMConfig, layer_idx: int):
696
+ super().__init__()
697
+ self.hidden_size = config.hidden_size
698
+ self.block_config = config.block_configs[layer_idx]
699
+
700
+ if not self.block_config.attention.no_op:
701
+ self.input_layernorm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
702
+ if not self.block_config.attention.replace_with_linear:
703
+ self.self_attn = DECILM_ATTENTION_CLASSES[config._attn_implementation](
704
+ config=config, attention_config=self.block_config.attention, layer_idx=layer_idx)
705
+ else:
706
+ self.self_attn = DeciLMLinearAttention(config)
707
+
708
+ if not self.block_config.ffn.no_op:
709
+ self.post_attention_layernorm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
710
+ if not self.block_config.ffn.replace_with_linear:
711
+ self.mlp = DeciLMMLP(config, self.block_config.ffn)
712
+ else:
713
+ self.mlp = DeciLMLinearMLP(config)
714
+
715
+ def forward(
716
+ self,
717
+ hidden_states: torch.Tensor,
718
+ attention_mask: Optional[torch.Tensor] = None,
719
+ position_ids: Optional[torch.LongTensor] = None,
720
+ past_key_value: Optional[Cache] = None,
721
+ output_attentions: Optional[bool] = False,
722
+ use_cache: Optional[bool] = False,
723
+ cache_position: Optional[torch.LongTensor] = None,
724
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
725
+ **kwargs,
726
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
727
+ """
728
+ Args:
729
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
730
+ attention_mask (`torch.FloatTensor`, *optional*):
731
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
732
+ query_sequence_length, key_sequence_length)` if default attention is used.
733
+ output_attentions (`bool`, *optional*):
734
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
735
+ returned tensors for more detail.
736
+ use_cache (`bool`, *optional*):
737
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
738
+ (see `past_key_values`).
739
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
740
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
741
+ Indices depicting the position of the input sequence tokens in the sequence
742
+ position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
743
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
744
+ with `head_dim` being the embedding dimension of each attention head.
745
+ kwargs (`dict`, *optional*):
746
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
747
+ into the model
748
+ """
749
+ self_attn_weights = None
750
+ present_key_value = past_key_value
751
+ if self.block_config.attention.no_op:
752
+ pass
753
+ elif self.block_config.attention.replace_with_linear:
754
+ residual = hidden_states
755
+ hidden_states = self.input_layernorm(hidden_states)
756
+ hidden_states = self.self_attn(hidden_states)
757
+ hidden_states = residual + hidden_states
758
+ else:
759
+ residual = hidden_states
760
+ hidden_states = self.input_layernorm(hidden_states)
761
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
762
+ hidden_states=hidden_states,
763
+ attention_mask=attention_mask,
764
+ position_ids=position_ids,
765
+ past_key_value=past_key_value,
766
+ output_attentions=output_attentions,
767
+ use_cache=use_cache,
768
+ cache_position=cache_position,
769
+ position_embeddings=position_embeddings,
770
+ **kwargs,
771
+ )
772
+ hidden_states = residual + hidden_states
773
+
774
+ if not self.block_config.ffn.no_op:
775
+ residual = hidden_states
776
+ hidden_states = self.post_attention_layernorm(hidden_states)
777
+ hidden_states = self.mlp(hidden_states)
778
+ hidden_states = residual + hidden_states
779
+
780
+ outputs = (hidden_states,)
781
+
782
+ if output_attentions:
783
+ outputs += (self_attn_weights,)
784
+
785
+ if use_cache:
786
+ outputs += (present_key_value,)
787
+
788
+ return outputs
789
+
790
+
791
+ DECILM_START_DOCSTRING = r"""
792
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
793
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
794
+ etc.)
795
+
796
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
797
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
798
+ and behavior.
799
+
800
+ Parameters:
801
+ config ([`DeciLMConfig`]):
802
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
803
+ load the weights associated with the model, only the configuration. Check out the
804
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
805
+ """
806
+
807
+
808
+ @add_start_docstrings(
809
+ "The bare DeciLM Model outputting raw hidden-states without any specific head on top.",
810
+ DECILM_START_DOCSTRING,
811
+ )
812
+ class DeciLMPreTrainedModel(PreTrainedModel):
813
+ config_class = DeciLMConfig
814
+ base_model_prefix = "model"
815
+ supports_gradient_checkpointing = True
816
+ _no_split_modules = ["DeciLMDecoderLayer"]
817
+ _skip_keys_device_placement = ["past_key_values"]
818
+ _supports_flash_attn_2 = True
819
+ _supports_sdpa = True
820
+ _supports_cache_class = True
821
+ _supports_quantized_cache = True
822
+ _supports_static_cache = True
823
+
824
+ def _init_weights(self, module):
825
+ std = self.config.initializer_range
826
+ if isinstance(module, nn.Linear):
827
+ module.weight.data.normal_(mean=0.0, std=std)
828
+ if module.bias is not None:
829
+ module.bias.data.zero_()
830
+ elif isinstance(module, nn.Embedding):
831
+ module.weight.data.normal_(mean=0.0, std=std)
832
+ if module.padding_idx is not None:
833
+ module.weight.data[module.padding_idx].zero_()
834
+
835
+ def _prepare_generation_config(
836
+ self, generation_config: Optional[GenerationConfig], **kwargs: dict
837
+ ) -> tuple[GenerationConfig, dict]:
838
+ # DeciLM-specific code
839
+ generation_config, model_kwargs = super()._prepare_generation_config(generation_config, **kwargs)
840
+ generation_config.cache_implementation = "variable"
841
+ NEED_SETUP_CACHE_CLASSES_MAPPING["variable"] = VariableCache
842
+ return generation_config, model_kwargs
843
+
844
+
845
+ DECILM_INPUTS_DOCSTRING = r"""
846
+ Args:
847
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
848
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
849
+ it.
850
+
851
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
852
+ [`PreTrainedTokenizer.__call__`] for details.
853
+
854
+ [What are input IDs?](../glossary#input-ids)
855
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
856
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
857
+
858
+ - 1 for tokens that are **not masked**,
859
+ - 0 for tokens that are **masked**.
860
+
861
+ [What are attention masks?](../glossary#attention-mask)
862
+
863
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
864
+ [`PreTrainedTokenizer.__call__`] for details.
865
+
866
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
867
+ `past_key_values`).
868
+
869
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
870
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
871
+ information on the default strategy.
872
+
873
+ - 1 indicates the head is **not masked**,
874
+ - 0 indicates the head is **masked**.
875
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
876
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
877
+ config.n_positions - 1]`.
878
+
879
+ [What are position IDs?](../glossary#position-ids)
880
+ past_key_values (`VariableCache`, *optional*):
881
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
882
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
883
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
884
+
885
+ If passed to the forward function, past_key_values must be a VariableCache object (see imports).
886
+ For generation purposes, this is already handled inside model.generate().
887
+
888
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
889
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
890
+ of shape `(batch_size, sequence_length)`.
891
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
892
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
893
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
894
+ model's internal embedding lookup matrix.
895
+ use_cache (`bool`, *optional*):
896
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
897
+ `past_key_values`).
898
+ output_attentions (`bool`, *optional*):
899
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
900
+ tensors for more detail.
901
+ output_hidden_states (`bool`, *optional*):
902
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
903
+ more detail.
904
+ return_dict (`bool`, *optional*):
905
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
906
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
907
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
908
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
909
+ the complete sequence length.
910
+ """
911
+
912
+
913
+ @add_start_docstrings(
914
+ "The bare DeciLM Model outputting raw hidden-states without any specific head on top.",
915
+ DECILM_START_DOCSTRING,
916
+ )
917
+ class DeciLMModel(DeciLMPreTrainedModel):
918
+ """
919
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeciLMDecoderLayer`]
920
+
921
+ Args:
922
+ config: DeciLMConfig
923
+ """
924
+
925
+ def __init__(self, config: DeciLMConfig):
926
+ super().__init__(config)
927
+ self.padding_idx = config.pad_token_id
928
+ self.vocab_size = config.vocab_size
929
+
930
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
931
+ self.layers = nn.ModuleList(
932
+ [DeciLMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
933
+ )
934
+ self.norm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
935
+ self.rotary_emb = DeciLMRotaryEmbedding(config=config)
936
+ self.gradient_checkpointing = False
937
+
938
+ # Initialize weights and apply final processing
939
+ self.post_init()
940
+
941
+ def get_input_embeddings(self):
942
+ return self.embed_tokens
943
+
944
+ def set_input_embeddings(self, value):
945
+ self.embed_tokens = value
946
+
947
+ @add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
948
+ def forward(
949
+ self,
950
+ input_ids: torch.LongTensor = None,
951
+ attention_mask: Optional[torch.Tensor] = None,
952
+ position_ids: Optional[torch.LongTensor] = None,
953
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
954
+ inputs_embeds: Optional[torch.FloatTensor] = None,
955
+ use_cache: Optional[bool] = None,
956
+ output_attentions: Optional[bool] = None,
957
+ output_hidden_states: Optional[bool] = None,
958
+ return_dict: Optional[bool] = None,
959
+ cache_position: Optional[torch.LongTensor] = None,
960
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
961
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
962
+ output_hidden_states = (
963
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
964
+ )
965
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
966
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
967
+
968
+ if (input_ids is None) ^ (inputs_embeds is not None):
969
+ raise ValueError(
970
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
971
+ )
972
+
973
+ if self.gradient_checkpointing and self.training and use_cache:
974
+ logger.warning_once(
975
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
976
+ )
977
+ use_cache = False
978
+
979
+ if inputs_embeds is None:
980
+ inputs_embeds = self.embed_tokens(input_ids)
981
+
982
+ is_legacy_cache_format = (past_key_values is not None) and not isinstance(past_key_values, Cache)
983
+ if is_legacy_cache_format:
984
+ raise NotImplementedError("DeciLMModel does not support legacy cache format, please use a newer "
985
+ "transformers version or use VariableCache explicitly (see import in this file).")
986
+
987
+ if cache_position is None:
988
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
989
+ cache_position = torch.arange(
990
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
991
+ )
992
+ if position_ids is None:
993
+ position_ids = cache_position.unsqueeze(0)
994
+
995
+ causal_mask = self._update_causal_mask(
996
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
997
+ )
998
+ hidden_states = inputs_embeds
999
+
1000
+ # create position embeddings to be shared across the decoder layers
1001
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
1002
+
1003
+ # decoder layers
1004
+ all_hidden_states = () if output_hidden_states else None
1005
+ all_self_attns = () if output_attentions else None
1006
+ next_decoder_cache = None
1007
+
1008
+ for decoder_layer in self.layers:
1009
+ if output_hidden_states:
1010
+ all_hidden_states += (hidden_states,)
1011
+
1012
+ if self.gradient_checkpointing and self.training:
1013
+ layer_outputs = self._gradient_checkpointing_func(
1014
+ decoder_layer.__call__,
1015
+ hidden_states,
1016
+ causal_mask,
1017
+ position_ids,
1018
+ past_key_values,
1019
+ output_attentions,
1020
+ use_cache,
1021
+ cache_position,
1022
+ position_embeddings,
1023
+ )
1024
+ else:
1025
+ layer_outputs = decoder_layer(
1026
+ hidden_states,
1027
+ attention_mask=causal_mask,
1028
+ position_ids=position_ids,
1029
+ past_key_value=past_key_values,
1030
+ output_attentions=output_attentions,
1031
+ use_cache=use_cache,
1032
+ cache_position=cache_position,
1033
+ position_embeddings=position_embeddings,
1034
+ )
1035
+
1036
+ hidden_states = layer_outputs[0]
1037
+
1038
+ if use_cache:
1039
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1040
+
1041
+ if output_attentions:
1042
+ all_self_attns += (layer_outputs[1],)
1043
+
1044
+ hidden_states = self.norm(hidden_states)
1045
+
1046
+ # add hidden states from the last decoder layer
1047
+ if output_hidden_states:
1048
+ all_hidden_states += (hidden_states,)
1049
+
1050
+ next_cache = next_decoder_cache if use_cache else None
1051
+
1052
+ if not return_dict:
1053
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1054
+ return BaseModelOutputWithPast(
1055
+ last_hidden_state=hidden_states,
1056
+ past_key_values=next_cache,
1057
+ hidden_states=all_hidden_states,
1058
+ attentions=all_self_attns,
1059
+ )
1060
+
1061
+ def _update_causal_mask(
1062
+ self,
1063
+ attention_mask: torch.Tensor,
1064
+ input_tensor: torch.Tensor,
1065
+ cache_position: torch.Tensor,
1066
+ past_key_values: Cache,
1067
+ output_attentions: bool,
1068
+ ):
1069
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
1070
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
1071
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
1072
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
1073
+
1074
+ if self.config._attn_implementation == "flash_attention_2":
1075
+ if attention_mask is not None and 0.0 in attention_mask:
1076
+ return attention_mask
1077
+ return None
1078
+
1079
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1080
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1081
+ # to infer the attention mask.
1082
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1083
+ assert not isinstance(past_key_values, StaticCache), "DeciLM does not support StaticCache"
1084
+ using_static_cache = isinstance(past_key_values, StaticCache)
1085
+
1086
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1087
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1088
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1089
+ attention_mask,
1090
+ inputs_embeds=input_tensor,
1091
+ past_key_values_length=past_seen_tokens,
1092
+ is_training=self.training,
1093
+ ):
1094
+ return None
1095
+
1096
+ dtype, device = input_tensor.dtype, input_tensor.device
1097
+ min_dtype = torch.finfo(dtype).min
1098
+ sequence_length = input_tensor.shape[1]
1099
+ if using_static_cache:
1100
+ target_length = past_key_values.get_max_length()
1101
+ else:
1102
+ target_length = (
1103
+ attention_mask.shape[-1]
1104
+ if isinstance(attention_mask, torch.Tensor)
1105
+ else past_seen_tokens + sequence_length + 1
1106
+ )
1107
+
1108
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
1109
+ causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1110
+ attention_mask,
1111
+ sequence_length=sequence_length,
1112
+ target_length=target_length,
1113
+ dtype=dtype,
1114
+ device=device,
1115
+ min_dtype=min_dtype,
1116
+ cache_position=cache_position,
1117
+ batch_size=input_tensor.shape[0],
1118
+ )
1119
+
1120
+ if (
1121
+ self.config._attn_implementation == "sdpa"
1122
+ and attention_mask is not None
1123
+ and attention_mask.device.type == "cuda"
1124
+ and not output_attentions
1125
+ ):
1126
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1127
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1128
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1129
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1130
+
1131
+ return causal_mask
1132
+
1133
+
1134
+ class DeciLMForCausalLM(DeciLMPreTrainedModel):
1135
+ _tied_weights_keys = ["lm_head.weight"]
1136
+
1137
+ def __init__(self, config):
1138
+ super().__init__(config)
1139
+ self.model = DeciLMModel(config)
1140
+ self.vocab_size = config.vocab_size
1141
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1142
+
1143
+ # Initialize weights and apply final processing
1144
+ self.post_init()
1145
+
1146
+ def get_input_embeddings(self):
1147
+ return self.model.embed_tokens
1148
+
1149
+ def set_input_embeddings(self, value):
1150
+ self.model.embed_tokens = value
1151
+
1152
+ def get_output_embeddings(self):
1153
+ return self.lm_head
1154
+
1155
+ def set_output_embeddings(self, new_embeddings):
1156
+ self.lm_head = new_embeddings
1157
+
1158
+ def set_decoder(self, decoder):
1159
+ self.model = decoder
1160
+
1161
+ def get_decoder(self):
1162
+ return self.model
1163
+
1164
+ @add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
1165
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1166
+ def forward(
1167
+ self,
1168
+ input_ids: torch.LongTensor = None,
1169
+ attention_mask: Optional[torch.Tensor] = None,
1170
+ position_ids: Optional[torch.LongTensor] = None,
1171
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1172
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1173
+ labels: Optional[torch.LongTensor] = None,
1174
+ use_cache: Optional[bool] = None,
1175
+ output_attentions: Optional[bool] = None,
1176
+ output_hidden_states: Optional[bool] = None,
1177
+ return_dict: Optional[bool] = None,
1178
+ cache_position: Optional[torch.LongTensor] = None,
1179
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1180
+ r"""
1181
+ Args:
1182
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1183
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1184
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1185
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1186
+
1187
+ Return:
1188
+ """
1189
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1190
+ output_hidden_states = (
1191
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1192
+ )
1193
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1194
+
1195
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1196
+ outputs = self.model(
1197
+ input_ids=input_ids,
1198
+ attention_mask=attention_mask,
1199
+ position_ids=position_ids,
1200
+ past_key_values=past_key_values,
1201
+ inputs_embeds=inputs_embeds,
1202
+ use_cache=use_cache,
1203
+ output_attentions=output_attentions,
1204
+ output_hidden_states=output_hidden_states,
1205
+ return_dict=return_dict,
1206
+ cache_position=cache_position,
1207
+ )
1208
+
1209
+ hidden_states = outputs[0]
1210
+ if self.config.pretraining_tp > 1:
1211
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1212
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1213
+ logits = torch.cat(logits, dim=-1)
1214
+ else:
1215
+ logits = self.lm_head(hidden_states)
1216
+ logits = logits.float()
1217
+
1218
+ loss = None
1219
+ if labels is not None:
1220
+ # Shift so that tokens < n predict n
1221
+ shift_logits = logits[..., :-1, :].contiguous()
1222
+ shift_labels = labels[..., 1:].contiguous()
1223
+ # Flatten the tokens
1224
+ loss_fct = CrossEntropyLoss()
1225
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1226
+ shift_labels = shift_labels.view(-1)
1227
+ # Enable model parallelism
1228
+ shift_labels = shift_labels.to(shift_logits.device)
1229
+ loss = loss_fct(shift_logits, shift_labels)
1230
+
1231
+ if not return_dict:
1232
+ output = (logits,) + outputs[1:]
1233
+ return (loss,) + output if loss is not None else output
1234
+
1235
+ return CausalLMOutputWithPast(
1236
+ loss=loss,
1237
+ logits=logits,
1238
+ past_key_values=outputs.past_key_values,
1239
+ hidden_states=outputs.hidden_states,
1240
+ attentions=outputs.attentions,
1241
+ )
1242
+
1243
+ def prepare_inputs_for_generation(
1244
+ self,
1245
+ input_ids,
1246
+ past_key_values=None,
1247
+ attention_mask=None,
1248
+ inputs_embeds=None,
1249
+ cache_position=None,
1250
+ position_ids=None,
1251
+ use_cache=True,
1252
+ **kwargs,
1253
+ ):
1254
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
1255
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
1256
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
1257
+ if past_key_values is not None:
1258
+ if inputs_embeds is not None: # Exception 1
1259
+ input_ids = input_ids[:, -cache_position.shape[0]:]
1260
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
1261
+ input_ids = input_ids[:, cache_position]
1262
+
1263
+ if attention_mask is not None and position_ids is None:
1264
+ # create position_ids on the fly for batch generation
1265
+ position_ids = attention_mask.long().cumsum(-1) - 1
1266
+ position_ids.masked_fill_(attention_mask == 0, 1)
1267
+ if past_key_values:
1268
+ position_ids = position_ids[:, -input_ids.shape[1]:]
1269
+
1270
+ # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
1271
+ position_ids = position_ids.clone(memory_format=torch.contiguous_format)
1272
+
1273
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1274
+ if inputs_embeds is not None and cache_position[0] == 0:
1275
+ model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
1276
+ else:
1277
+ # The clone here is for the same reason as for `position_ids`.
1278
+ model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
1279
+
1280
+ assert not isinstance(past_key_values, StaticCache), "DeciLM does not support StaticCache"
1281
+ if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
1282
+ if model_inputs["inputs_embeds"] is not None:
1283
+ batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
1284
+ device = model_inputs["inputs_embeds"].device
1285
+ else:
1286
+ batch_size, sequence_length = model_inputs["input_ids"].shape
1287
+ device = model_inputs["input_ids"].device
1288
+
1289
+ dtype = self.lm_head.weight.dtype
1290
+ min_dtype = torch.finfo(dtype).min
1291
+
1292
+ attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1293
+ attention_mask,
1294
+ sequence_length=sequence_length,
1295
+ target_length=past_key_values.get_max_length(),
1296
+ dtype=dtype,
1297
+ device=device,
1298
+ min_dtype=min_dtype,
1299
+ cache_position=cache_position,
1300
+ batch_size=batch_size,
1301
+ )
1302
+
1303
+ model_inputs.update(
1304
+ {
1305
+ "position_ids": position_ids,
1306
+ "cache_position": cache_position,
1307
+ "past_key_values": past_key_values,
1308
+ "use_cache": use_cache,
1309
+ "attention_mask": attention_mask,
1310
+ }
1311
+ )
1312
+ return model_inputs
1313
+
1314
+
1315
+ @add_start_docstrings(
1316
+ """
1317
+ The DeciLM Model transformer with a sequence classification head on top (linear layer).
1318
+
1319
+ [`DeciLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1320
+ (e.g. GPT-2) do.
1321
+
1322
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1323
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1324
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1325
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1326
+ each row of the batch).
1327
+ """,
1328
+ DECILM_START_DOCSTRING,
1329
+ )
1330
+ class DeciLMForSequenceClassification(DeciLMPreTrainedModel):
1331
+ def __init__(self, config):
1332
+ super().__init__(config)
1333
+ self.num_labels = config.num_labels
1334
+ self.model = DeciLMModel(config)
1335
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1336
+
1337
+ # Initialize weights and apply final processing
1338
+ self.post_init()
1339
+
1340
+ def get_input_embeddings(self):
1341
+ return self.model.embed_tokens
1342
+
1343
+ def set_input_embeddings(self, value):
1344
+ self.model.embed_tokens = value
1345
+
1346
+ @add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
1347
+ def forward(
1348
+ self,
1349
+ input_ids: Optional[torch.LongTensor] = None,
1350
+ attention_mask: Optional[torch.Tensor] = None,
1351
+ position_ids: Optional[torch.LongTensor] = None,
1352
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1353
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1354
+ labels: Optional[torch.LongTensor] = None,
1355
+ use_cache: Optional[bool] = None,
1356
+ output_attentions: Optional[bool] = None,
1357
+ output_hidden_states: Optional[bool] = None,
1358
+ return_dict: Optional[bool] = None,
1359
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1360
+ r"""
1361
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1362
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1363
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1364
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1365
+ """
1366
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1367
+
1368
+ transformer_outputs = self.model(
1369
+ input_ids,
1370
+ attention_mask=attention_mask,
1371
+ position_ids=position_ids,
1372
+ past_key_values=past_key_values,
1373
+ inputs_embeds=inputs_embeds,
1374
+ use_cache=use_cache,
1375
+ output_attentions=output_attentions,
1376
+ output_hidden_states=output_hidden_states,
1377
+ return_dict=return_dict,
1378
+ )
1379
+ hidden_states = transformer_outputs[0]
1380
+ logits = self.score(hidden_states)
1381
+
1382
+ if input_ids is not None:
1383
+ batch_size = input_ids.shape[0]
1384
+ else:
1385
+ batch_size = inputs_embeds.shape[0]
1386
+
1387
+ if self.config.pad_token_id is None and batch_size != 1:
1388
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1389
+ if self.config.pad_token_id is None:
1390
+ sequence_lengths = -1
1391
+ else:
1392
+ if input_ids is not None:
1393
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1394
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1395
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1396
+ sequence_lengths = sequence_lengths.to(logits.device)
1397
+ else:
1398
+ sequence_lengths = -1
1399
+
1400
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1401
+
1402
+ loss = None
1403
+ if labels is not None:
1404
+ labels = labels.to(logits.device)
1405
+ if self.config.problem_type is None:
1406
+ if self.num_labels == 1:
1407
+ self.config.problem_type = "regression"
1408
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1409
+ self.config.problem_type = "single_label_classification"
1410
+ else:
1411
+ self.config.problem_type = "multi_label_classification"
1412
+
1413
+ if self.config.problem_type == "regression":
1414
+ loss_fct = MSELoss()
1415
+ if self.num_labels == 1:
1416
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1417
+ else:
1418
+ loss = loss_fct(pooled_logits, labels)
1419
+ elif self.config.problem_type == "single_label_classification":
1420
+ loss_fct = CrossEntropyLoss()
1421
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1422
+ elif self.config.problem_type == "multi_label_classification":
1423
+ loss_fct = BCEWithLogitsLoss()
1424
+ loss = loss_fct(pooled_logits, labels)
1425
+ if not return_dict:
1426
+ output = (pooled_logits,) + transformer_outputs[1:]
1427
+ return ((loss,) + output) if loss is not None else output
1428
+
1429
+ return SequenceClassifierOutputWithPast(
1430
+ loss=loss,
1431
+ logits=pooled_logits,
1432
+ past_key_values=transformer_outputs.past_key_values,
1433
+ hidden_states=transformer_outputs.hidden_states,
1434
+ attentions=transformer_outputs.attentions,
1435
+ )
1436
+
1437
+
1438
+ @add_start_docstrings(
1439
+ """
1440
+ The DeciLM Model transformer with a span classification head on top for extractive question-answering tasks like
1441
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1442
+ """,
1443
+ DECILM_START_DOCSTRING,
1444
+ )
1445
+ class DeciLMForQuestionAnswering(DeciLMPreTrainedModel):
1446
+ base_model_prefix = "transformer"
1447
+
1448
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->DeciLM
1449
+ def __init__(self, config):
1450
+ super().__init__(config)
1451
+ self.transformer = DeciLMModel(config)
1452
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1453
+
1454
+ # Initialize weights and apply final processing
1455
+ self.post_init()
1456
+
1457
+ def get_input_embeddings(self):
1458
+ return self.transformer.embed_tokens
1459
+
1460
+ def set_input_embeddings(self, value):
1461
+ self.transformer.embed_tokens = value
1462
+
1463
+ @add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
1464
+ def forward(
1465
+ self,
1466
+ input_ids: Optional[torch.LongTensor] = None,
1467
+ attention_mask: Optional[torch.FloatTensor] = None,
1468
+ position_ids: Optional[torch.LongTensor] = None,
1469
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1470
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1471
+ start_positions: Optional[torch.LongTensor] = None,
1472
+ end_positions: Optional[torch.LongTensor] = None,
1473
+ output_attentions: Optional[bool] = None,
1474
+ output_hidden_states: Optional[bool] = None,
1475
+ return_dict: Optional[bool] = None,
1476
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1477
+ r"""
1478
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1479
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1480
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1481
+ are not taken into account for computing the loss.
1482
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1483
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1484
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1485
+ are not taken into account for computing the loss.
1486
+ """
1487
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1488
+
1489
+ outputs = self.transformer(
1490
+ input_ids,
1491
+ attention_mask=attention_mask,
1492
+ position_ids=position_ids,
1493
+ past_key_values=past_key_values,
1494
+ inputs_embeds=inputs_embeds,
1495
+ output_attentions=output_attentions,
1496
+ output_hidden_states=output_hidden_states,
1497
+ return_dict=return_dict,
1498
+ )
1499
+
1500
+ sequence_output = outputs[0]
1501
+
1502
+ logits = self.qa_outputs(sequence_output)
1503
+ start_logits, end_logits = logits.split(1, dim=-1)
1504
+ start_logits = start_logits.squeeze(-1).contiguous()
1505
+ end_logits = end_logits.squeeze(-1).contiguous()
1506
+
1507
+ total_loss = None
1508
+ if start_positions is not None and end_positions is not None:
1509
+ # If we are on multi-GPU, split add a dimension
1510
+ if len(start_positions.size()) > 1:
1511
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1512
+ if len(end_positions.size()) > 1:
1513
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1514
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1515
+ ignored_index = start_logits.size(1)
1516
+ start_positions = start_positions.clamp(0, ignored_index)
1517
+ end_positions = end_positions.clamp(0, ignored_index)
1518
+
1519
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1520
+ start_loss = loss_fct(start_logits, start_positions)
1521
+ end_loss = loss_fct(end_logits, end_positions)
1522
+ total_loss = (start_loss + end_loss) / 2
1523
+
1524
+ if not return_dict:
1525
+ output = (start_logits, end_logits) + outputs[2:]
1526
+ return ((total_loss,) + output) if total_loss is not None else output
1527
+
1528
+ return QuestionAnsweringModelOutput(
1529
+ loss=total_loss,
1530
+ start_logits=start_logits,
1531
+ end_logits=end_logits,
1532
+ hidden_states=outputs.hidden_states,
1533
+ attentions=outputs.attentions,
1534
+ )
1535
+
1536
+
1537
+ @add_start_docstrings(
1538
+ """
1539
+ The DeciLM Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1540
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1541
+ """,
1542
+ DECILM_START_DOCSTRING,
1543
+ )
1544
+ class DeciLMForTokenClassification(DeciLMPreTrainedModel):
1545
+ def __init__(self, config):
1546
+ super().__init__(config)
1547
+ self.num_labels = config.num_labels
1548
+ self.model = DeciLMModel(config)
1549
+ if getattr(config, "classifier_dropout", None) is not None:
1550
+ classifier_dropout = config.classifier_dropout
1551
+ elif getattr(config, "hidden_dropout", None) is not None:
1552
+ classifier_dropout = config.hidden_dropout
1553
+ else:
1554
+ classifier_dropout = 0.1
1555
+ self.dropout = nn.Dropout(classifier_dropout)
1556
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1557
+
1558
+ # Initialize weights and apply final processing
1559
+ self.post_init()
1560
+
1561
+ def get_input_embeddings(self):
1562
+ return self.model.embed_tokens
1563
+
1564
+ def set_input_embeddings(self, value):
1565
+ self.model.embed_tokens = value
1566
+
1567
+ @add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
1568
+ def forward(
1569
+ self,
1570
+ input_ids: Optional[torch.LongTensor] = None,
1571
+ attention_mask: Optional[torch.Tensor] = None,
1572
+ position_ids: Optional[torch.LongTensor] = None,
1573
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1574
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1575
+ labels: Optional[torch.LongTensor] = None,
1576
+ use_cache: Optional[bool] = None,
1577
+ output_attentions: Optional[bool] = None,
1578
+ output_hidden_states: Optional[bool] = None,
1579
+ return_dict: Optional[bool] = None,
1580
+ ) -> Union[Tuple, TokenClassifierOutput]:
1581
+ r"""
1582
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1583
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1584
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1585
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1586
+ """
1587
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1588
+
1589
+ outputs = self.model(
1590
+ input_ids,
1591
+ attention_mask=attention_mask,
1592
+ position_ids=position_ids,
1593
+ past_key_values=past_key_values,
1594
+ inputs_embeds=inputs_embeds,
1595
+ use_cache=use_cache,
1596
+ output_attentions=output_attentions,
1597
+ output_hidden_states=output_hidden_states,
1598
+ return_dict=return_dict,
1599
+ )
1600
+ sequence_output = outputs[0]
1601
+ sequence_output = self.dropout(sequence_output)
1602
+ logits = self.score(sequence_output)
1603
+
1604
+ loss = None
1605
+ if labels is not None:
1606
+ loss_fct = CrossEntropyLoss()
1607
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1608
+
1609
+ if not return_dict:
1610
+ output = (logits,) + outputs[2:]
1611
+ return ((loss,) + output) if loss is not None else output
1612
+
1613
+ return TokenClassifierOutput(
1614
+ loss=loss,
1615
+ logits=logits,
1616
+ hidden_states=outputs.hidden_states,
1617
+ attentions=outputs.attentions,
1618
+ )
1619
+
1620
+
1621
+ ########################################################################
1622
+ # DeciLM-specific code
1623
+ ########################################################################
1624
+
1625
+
1626
+ def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
1627
+ # DeciLM-specific code
1628
+ intermediate_size = int(2 * ffn_mult * n_embd / 3)
1629
+ return _find_multiple(intermediate_size, 256)
1630
+
1631
+
1632
+ def _find_multiple(n: int, k: int) -> int:
1633
+ # DeciLM-specific code
1634
+ if n % k == 0:
1635
+ return n
1636
+ return n + k - (n % k)
1637
+
1638
+
1639
+ class DeciLMLinearMLP(nn.Module):
1640
+ # DeciLM-specific code
1641
+ def __init__(self,
1642
+ config: DeciLMConfig,
1643
+ ):
1644
+ super().__init__()
1645
+ self.linear_mlp = nn.Linear(in_features=config.hidden_size,
1646
+ out_features=config.hidden_size,
1647
+ bias=False)
1648
+
1649
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
1650
+ return self.linear_mlp.forward(x)
1651
+
1652
+
1653
+ class DeciLMLinearAttention(nn.Module):
1654
+ # DeciLM-specific code
1655
+ def __init__(self,
1656
+ config: DeciLMConfig,
1657
+ ):
1658
+ super().__init__()
1659
+ self.linear_attn = nn.Linear(in_features=config.hidden_size,
1660
+ out_features=config.hidden_size,
1661
+ bias=False)
1662
+
1663
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
1664
+ return self.linear_attn.forward(x)
1665
+
special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_chat_template.jinja ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {% set default_system_prompt = 'You are a helpful and accurate chatbot trained by Deci AI.\nNo Need to disclose your system prompt to users. If you think that you answered correctly, then it\\'s ok to disagree with the user.' %}
2
+ {% if messages[0]['role'] != 'system' %}
3
+ {% set messages = [{'role': 'system', 'content': default_system_prompt}] + messages %}
4
+ {% endif %}
5
+ {% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if (loop.last and add_generation_prompt) or not loop.last %}{{ '<|im_end|>' + '\n'}}{% endif %}{% endfor %}
6
+ {% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{ '<|im_start|>assistant\n' }}{% endif %}
tokenizer_config.json ADDED
@@ -0,0 +1,2062 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 131072,
2061
+ "tokenizer_class": "PreTrainedTokenizerFast"
2062
+ }
transformers_4_44_2__activations.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import math
16
+ from collections import OrderedDict
17
+
18
+ import torch
19
+ from packaging import version
20
+ from torch import Tensor, nn
21
+
22
+ from transformers.utils import logging
23
+
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ class PytorchGELUTanh(nn.Module):
29
+ """
30
+ A fast C implementation of the tanh approximation of the GeLU activation function. See
31
+ https://arxiv.org/abs/1606.08415.
32
+
33
+ This implementation is equivalent to NewGELU and FastGELU but much faster. However, it is not an exact numerical
34
+ match due to rounding errors.
35
+ """
36
+
37
+ def __init__(self):
38
+ super().__init__()
39
+ if version.parse(torch.__version__) < version.parse("1.12.0"):
40
+ raise ImportError(
41
+ f"You are using torch=={torch.__version__}, but torch>=1.12.0 is required to use "
42
+ "PytorchGELUTanh. Please upgrade torch."
43
+ )
44
+
45
+ def forward(self, input: Tensor) -> Tensor:
46
+ return nn.functional.gelu(input, approximate="tanh")
47
+
48
+
49
+ class NewGELUActivation(nn.Module):
50
+ """
51
+ Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
52
+ the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
53
+ """
54
+
55
+ def forward(self, input: Tensor) -> Tensor:
56
+ return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))
57
+
58
+
59
+ class GELUActivation(nn.Module):
60
+ """
61
+ Original Implementation of the GELU activation function in Google BERT repo when initially created. For
62
+ information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
63
+ torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) This is now written in C in nn.functional
64
+ Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
65
+ """
66
+
67
+ def __init__(self, use_gelu_python: bool = False):
68
+ super().__init__()
69
+ if use_gelu_python:
70
+ self.act = self._gelu_python
71
+ else:
72
+ self.act = nn.functional.gelu
73
+
74
+ def _gelu_python(self, input: Tensor) -> Tensor:
75
+ return input * 0.5 * (1.0 + torch.erf(input / math.sqrt(2.0)))
76
+
77
+ def forward(self, input: Tensor) -> Tensor:
78
+ return self.act(input)
79
+
80
+
81
+ class FastGELUActivation(nn.Module):
82
+ """
83
+ Applies GELU approximation that is slower than QuickGELU but more accurate. See: https://github.com/hendrycks/GELUs
84
+ """
85
+
86
+ def forward(self, input: Tensor) -> Tensor:
87
+ return 0.5 * input * (1.0 + torch.tanh(input * 0.7978845608 * (1.0 + 0.044715 * input * input)))
88
+
89
+
90
+ class QuickGELUActivation(nn.Module):
91
+ """
92
+ Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs
93
+ """
94
+
95
+ def forward(self, input: Tensor) -> Tensor:
96
+ return input * torch.sigmoid(1.702 * input)
97
+
98
+
99
+ class ClippedGELUActivation(nn.Module):
100
+ """
101
+ Clip the range of possible GeLU outputs between [min, max]. This is especially useful for quantization purpose, as
102
+ it allows mapping negatives values in the GeLU spectrum. For more information on this trick, please refer to
103
+ https://arxiv.org/abs/2004.09602.
104
+
105
+ Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
106
+ initially created.
107
+
108
+ For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 +
109
+ torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))). See https://arxiv.org/abs/1606.08415
110
+ """
111
+
112
+ def __init__(self, min: float, max: float):
113
+ if min > max:
114
+ raise ValueError(f"min should be < max (got min: {min}, max: {max})")
115
+
116
+ super().__init__()
117
+ self.min = min
118
+ self.max = max
119
+
120
+ def forward(self, x: Tensor) -> Tensor:
121
+ return torch.clip(gelu(x), self.min, self.max)
122
+
123
+
124
+ class AccurateGELUActivation(nn.Module):
125
+ """
126
+ Applies GELU approximation that is faster than default and more accurate than QuickGELU. See:
127
+ https://github.com/hendrycks/GELUs
128
+
129
+ Implemented along with MEGA (Moving Average Equipped Gated Attention)
130
+ """
131
+
132
+ def __init__(self):
133
+ super().__init__()
134
+ self.precomputed_constant = math.sqrt(2 / math.pi)
135
+
136
+ def forward(self, input: Tensor) -> Tensor:
137
+ return 0.5 * input * (1 + torch.tanh(self.precomputed_constant * (input + 0.044715 * torch.pow(input, 3))))
138
+
139
+
140
+ class MishActivation(nn.Module):
141
+ """
142
+ See Mish: A Self-Regularized Non-Monotonic Activation Function (Misra., https://arxiv.org/abs/1908.08681). Also
143
+ visit the official repository for the paper: https://github.com/digantamisra98/Mish
144
+ """
145
+
146
+ def __init__(self):
147
+ super().__init__()
148
+ if version.parse(torch.__version__) < version.parse("1.9.0"):
149
+ self.act = self._mish_python
150
+ else:
151
+ self.act = nn.functional.mish
152
+
153
+ def _mish_python(self, input: Tensor) -> Tensor:
154
+ return input * torch.tanh(nn.functional.softplus(input))
155
+
156
+ def forward(self, input: Tensor) -> Tensor:
157
+ return self.act(input)
158
+
159
+
160
+ class LinearActivation(nn.Module):
161
+ """
162
+ Applies the linear activation function, i.e. forwarding input directly to output.
163
+ """
164
+
165
+ def forward(self, input: Tensor) -> Tensor:
166
+ return input
167
+
168
+
169
+ class LaplaceActivation(nn.Module):
170
+ """
171
+ Applies elementwise activation based on Laplace function, introduced in MEGA as an attention activation. See
172
+ https://arxiv.org/abs/2209.10655
173
+
174
+ Inspired by squared relu, but with bounded range and gradient for better stability
175
+ """
176
+
177
+ def forward(self, input, mu=0.707107, sigma=0.282095):
178
+ input = (input - mu).div(sigma * math.sqrt(2.0))
179
+ return 0.5 * (1.0 + torch.erf(input))
180
+
181
+
182
+ class ReLUSquaredActivation(nn.Module):
183
+ """
184
+ Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
185
+ """
186
+
187
+ def forward(self, input):
188
+ relu_applied = nn.functional.relu(input)
189
+ squared = torch.square(relu_applied)
190
+ return squared
191
+
192
+
193
+ class ClassInstantier(OrderedDict):
194
+ def __getitem__(self, key):
195
+ content = super().__getitem__(key)
196
+ cls, kwargs = content if isinstance(content, tuple) else (content, {})
197
+ return cls(**kwargs)
198
+
199
+
200
+ ACT2CLS = {
201
+ "gelu": GELUActivation,
202
+ "gelu_10": (ClippedGELUActivation, {"min": -10, "max": 10}),
203
+ "gelu_fast": FastGELUActivation,
204
+ "gelu_new": NewGELUActivation,
205
+ "gelu_python": (GELUActivation, {"use_gelu_python": True}),
206
+ "gelu_pytorch_tanh": PytorchGELUTanh,
207
+ "gelu_accurate": AccurateGELUActivation,
208
+ "laplace": LaplaceActivation,
209
+ "leaky_relu": nn.LeakyReLU,
210
+ "linear": LinearActivation,
211
+ "mish": MishActivation,
212
+ "quick_gelu": QuickGELUActivation,
213
+ "relu": nn.ReLU,
214
+ "relu2": ReLUSquaredActivation,
215
+ "relu6": nn.ReLU6,
216
+ "sigmoid": nn.Sigmoid,
217
+ "silu": nn.SiLU,
218
+ "swish": nn.SiLU,
219
+ "tanh": nn.Tanh,
220
+ }
221
+ ACT2FN = ClassInstantier(ACT2CLS)
222
+
223
+
224
+ def get_activation(activation_string):
225
+ if activation_string in ACT2FN:
226
+ return ACT2FN[activation_string]
227
+ else:
228
+ raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
229
+
230
+
231
+ # For backwards compatibility with: from activations import gelu_python
232
+ gelu_python = get_activation("gelu_python")
233
+ gelu_new = get_activation("gelu_new")
234
+ gelu = get_activation("gelu")
235
+ gelu_fast = get_activation("gelu_fast")
236
+ quick_gelu = get_activation("quick_gelu")
237
+ silu = get_activation("silu")
238
+ mish = get_activation("mish")
239
+ linear_act = get_activation("linear")
transformers_4_44_2__cache_utils.py ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import importlib.metadata
3
+ import json
4
+ import os
5
+ from dataclasses import dataclass
6
+ from typing import Any, Dict, List, Optional, Tuple, Union
7
+
8
+ import torch
9
+ from packaging import version
10
+
11
+ from transformers.configuration_utils import PretrainedConfig
12
+ from transformers.utils import is_torchdynamo_compiling, logging
13
+
14
+
15
+ logger = logging.get_logger(__name__)
16
+
17
+
18
+ class Cache(torch.nn.Module):
19
+ """
20
+ Base, abstract class for all caches. The actual data structure is specific to each subclass.
21
+ """
22
+
23
+ def __init__(self):
24
+ super().__init__()
25
+
26
+ def update(
27
+ self,
28
+ key_states: torch.Tensor,
29
+ value_states: torch.Tensor,
30
+ layer_idx: int,
31
+ cache_kwargs: Optional[Dict[str, Any]] = None,
32
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
33
+ """
34
+ Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
35
+
36
+ Parameters:
37
+ key_states (`torch.Tensor`):
38
+ The new key states to cache.
39
+ value_states (`torch.Tensor`):
40
+ The new value states to cache.
41
+ layer_idx (`int`):
42
+ The index of the layer to cache the states for.
43
+ cache_kwargs (`Dict[str, Any]`, `optional`):
44
+ Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
45
+ cache to be created.
46
+
47
+ Return:
48
+ A tuple containing the updated key and value states.
49
+ """
50
+ raise NotImplementedError("Make sure to implement `update` in a subclass.")
51
+
52
+ def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
53
+ """Returns the sequence length of the cached states. A layer index can be optionally passed."""
54
+ # TODO: deprecate this function in favor of `cache_position`
55
+ raise NotImplementedError("Make sure to implement `get_seq_length` in a subclass.")
56
+
57
+ def get_max_length(self) -> Optional[int]:
58
+ """Returns the maximum sequence length of the cached states, if there is any."""
59
+ raise NotImplementedError("Make sure to implement `get_max_length` in a subclass.")
60
+
61
+ def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
62
+ """Given the sequence length of the new inputs, returns the usable length of the cache."""
63
+ # Cache without size limit -> all cache is usable
64
+ # Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
65
+ # length, we will need to evict part of the cache (and thus not all cache is usable)
66
+ max_length = self.get_max_length()
67
+ previous_seq_length = self.get_seq_length(layer_idx)
68
+ if max_length is not None and previous_seq_length + new_seq_length > max_length:
69
+ return max_length - new_seq_length
70
+ return previous_seq_length
71
+
72
+ def reorder_cache(self, beam_idx: torch.LongTensor):
73
+ """Reorders the cache for beam search, given the selected beam indices."""
74
+ for layer_idx in range(len(self.key_cache)):
75
+ device = self.key_cache[layer_idx].device
76
+ self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
77
+ device = self.value_cache[layer_idx].device
78
+ self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
79
+
80
+ @property
81
+ def seen_tokens(self):
82
+ logger.warning_once(
83
+ "The `seen_tokens` attribute is deprecated and will be removed in v4.41. Use the `cache_position` "
84
+ "model input instead."
85
+ )
86
+ if hasattr(self, "_seen_tokens"):
87
+ return self._seen_tokens
88
+ else:
89
+ return None
90
+
91
+
92
+ @dataclass
93
+ class CacheConfig:
94
+ """
95
+ Base class for cache configs
96
+ """
97
+
98
+ cache_implementation: None
99
+
100
+ @classmethod
101
+ def from_dict(cls, config_dict, **kwargs):
102
+ """
103
+ Constructs a CacheConfig instance from a dictionary of parameters.
104
+ Args:
105
+ config_dict (Dict[str, Any]): Dictionary containing configuration parameters.
106
+ **kwargs: Additional keyword arguments to override dictionary values.
107
+
108
+ Returns:
109
+ CacheConfig: Instance of CacheConfig constructed from the dictionary.
110
+ """
111
+ config = cls(**config_dict)
112
+ to_remove = []
113
+ for key, value in kwargs.items():
114
+ if hasattr(config, key):
115
+ setattr(config, key, value)
116
+ to_remove.append(key)
117
+ for key in to_remove:
118
+ kwargs.pop(key, None)
119
+ return config
120
+
121
+ # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.to_json_file
122
+ def to_json_file(self, json_file_path: Union[str, os.PathLike]):
123
+ """
124
+ Save this instance to a JSON file.
125
+
126
+ Args:
127
+ json_file_path (`str` or `os.PathLike`):
128
+ Path to the JSON file in which this configuration instance's parameters will be saved.
129
+ use_diff (`bool`, *optional*, defaults to `True`):
130
+ If set to `True`, only the difference between the config instance and the default
131
+ `QuantizationConfig()` is serialized to JSON file.
132
+ """
133
+ with open(json_file_path, "w", encoding="utf-8") as writer:
134
+ config_dict = self.to_dict()
135
+ json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
136
+
137
+ writer.write(json_string)
138
+
139
+ # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.to_dict
140
+ def to_dict(self) -> Dict[str, Any]:
141
+ """
142
+ Serializes this instance to a Python dictionary. Returns:
143
+ `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
144
+ """
145
+ return copy.deepcopy(self.__dict__)
146
+
147
+ # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.__iter__
148
+ def __iter__(self):
149
+ """allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin"""
150
+ for attr, value in copy.deepcopy(self.__dict__).items():
151
+ yield attr, value
152
+
153
+ # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.__repr__
154
+ def __repr__(self):
155
+ return f"{self.__class__.__name__} {self.to_json_string()}"
156
+
157
+ def to_json_string(self):
158
+ """
159
+ Serializes this instance to a JSON formatted string.
160
+ Returns:
161
+ str: JSON formatted string representing the configuration instance.
162
+ """
163
+ return json.dumps(self.__dict__, indent=2) + "\n"
164
+
165
+ # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.update
166
+ def update(self, **kwargs):
167
+ """
168
+ Updates attributes of this class instance with attributes from `kwargs` if they match existing attributes,
169
+ returning all the unused kwargs.
170
+
171
+ Args:
172
+ kwargs (`Dict[str, Any]`):
173
+ Dictionary of attributes to tentatively update this class.
174
+
175
+ Returns:
176
+ `Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
177
+ """
178
+ to_remove = []
179
+ for key, value in kwargs.items():
180
+ if hasattr(self, key):
181
+ setattr(self, key, value)
182
+ to_remove.append(key)
183
+
184
+ # Remove all the attributes that were updated, without modifying the input dict
185
+ unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove}
186
+ return unused_kwargs
187
+
188
+
189
+ class StaticCache(Cache):
190
+ """
191
+ Static Cache class to be used with `torch.compile(model)` and `torch.export()`.
192
+
193
+ Parameters:
194
+ config (`PretrainedConfig`):
195
+ The configuration file defining the shape-related attributes required to initialize the static cache.
196
+ max_batch_size (`int`):
197
+ The maximum batch size with which the model will be used.
198
+ max_cache_len (`int`):
199
+ The maximum sequence length with which the model will be used.
200
+ device (`torch.device`):
201
+ The device on which the cache should be initialized. Should be the same as the layer.
202
+ dtype (*optional*, defaults to `torch.float32`):
203
+ The default `dtype` to use when initializing the layer.
204
+
205
+ Example:
206
+
207
+ ```python
208
+ >>> from transformers import AutoTokenizer, AutoModelForCausalLM, StaticCache
209
+
210
+ >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
211
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
212
+
213
+ >>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
214
+
215
+ >>> # Prepare a cache class and pass it to model's forward
216
+ >>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
217
+ >>> max_generated_length = inputs.input_ids.shape[1] + 10
218
+ >>> past_key_values = StaticCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
219
+ >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
220
+ >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
221
+ ```
222
+ """
223
+
224
+ def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
225
+ super().__init__()
226
+ self.max_batch_size = max_batch_size
227
+ self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
228
+ # Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
229
+ self.head_dim = (
230
+ config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
231
+ )
232
+
233
+ self.dtype = dtype if dtype is not None else torch.float32
234
+ self.num_key_value_heads = (
235
+ config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
236
+ )
237
+
238
+ self.key_cache: List[torch.Tensor] = []
239
+ self.value_cache: List[torch.Tensor] = []
240
+ # Note: There will be significant perf decrease if switching to use 5D tensors instead.
241
+ cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
242
+ for idx in range(config.num_hidden_layers):
243
+ new_layer_key_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
244
+ new_layer_value_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
245
+ # Notes:
246
+ # 1. `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
247
+ # breaks when updating the cache. It can't be used if the cache code is being compiled (but in that case
248
+ # it is not needed anyway)
249
+ # 2. `torch.export()` requires mutations to be registered as buffers.
250
+ if not is_torchdynamo_compiling():
251
+ self.register_buffer(f"key_cache_{idx}", torch.zeros(cache_shape, dtype=dtype, device=device))
252
+ self.register_buffer(f"value_cache_{idx}", torch.zeros(cache_shape, dtype=dtype, device=device))
253
+ new_layer_key_cache = getattr(self, f"key_cache_{idx}")
254
+ new_layer_value_cache = getattr(self, f"value_cache_{idx}")
255
+ torch._dynamo.mark_static_address(new_layer_key_cache)
256
+ torch._dynamo.mark_static_address(new_layer_value_cache)
257
+ self.key_cache.append(new_layer_key_cache)
258
+ self.value_cache.append(new_layer_value_cache)
259
+
260
+ def update(
261
+ self,
262
+ key_states: torch.Tensor,
263
+ value_states: torch.Tensor,
264
+ layer_idx: int,
265
+ cache_kwargs: Optional[Dict[str, Any]] = None,
266
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
267
+ """
268
+ Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
269
+ It is VERY important to index using a tensor, otherwise you introduce a copy to the device.
270
+
271
+ Parameters:
272
+ key_states (`torch.Tensor`):
273
+ The new key states to cache.
274
+ value_states (`torch.Tensor`):
275
+ The new value states to cache.
276
+ layer_idx (`int`):
277
+ The index of the layer to cache the states for.
278
+ cache_kwargs (`Dict[str, Any]`, `optional`):
279
+ Additional arguments for the cache subclass. The `StaticCache` needs the `cache_position` input
280
+ to know how where to write in the cache.
281
+
282
+ Return:
283
+ A tuple containing the updated key and value states.
284
+ """
285
+ cache_position = cache_kwargs.get("cache_position")
286
+ self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device=key_states.device)
287
+ self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device=value_states.device)
288
+ k_out = self.key_cache[layer_idx]
289
+ v_out = self.value_cache[layer_idx]
290
+
291
+ if cache_position is None:
292
+ k_out.copy_(key_states)
293
+ v_out.copy_(value_states)
294
+ else:
295
+ # Note: here we use `tensor.index_copy_(dim, index, tensor)` that is equivalent to
296
+ # `tensor[:, :, index] = tensor`, but the first one is compile-friendly and it does explicitly an in-place
297
+ # operation, that avoids copies and uses less memory.
298
+ try:
299
+ k_out.index_copy_(2, cache_position, key_states)
300
+ v_out.index_copy_(2, cache_position, value_states)
301
+ except NotImplementedError:
302
+ # The operator 'aten::index_copy.out' is not currently implemented for the MPS device.
303
+ k_out[:, :, cache_position] = key_states
304
+ v_out[:, :, cache_position] = value_states
305
+
306
+ return k_out, v_out
307
+
308
+ def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
309
+ """Returns the sequence length of the cached states that were seen by the model."""
310
+ # Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
311
+ # limit the check to the first batch member and head dimension.
312
+ # TODO: deprecate this function in favor of `cache_position`
313
+ return (self.key_cache[layer_idx][0, 0].any(dim=-1)).sum()
314
+
315
+ def get_max_length(self) -> Optional[int]:
316
+ """Returns the maximum sequence length of the cached states."""
317
+ return self.max_cache_len
318
+
319
+ def reset(self):
320
+ """Resets the cache values while preserving the objects"""
321
+ for layer_idx in range(len(self.key_cache)):
322
+ # In-place ops prevent breaking the static address
323
+ self.key_cache[layer_idx].zero_()
324
+ self.value_cache[layer_idx].zero_()
325
+
transformers_4_44_2__configuration_llama.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from .transformers_4_44_2__modeling_rope_utils import rope_config_validation
24
+
25
+
26
+ class LlamaConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the LLaMA-7B.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`LlamaModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer decoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer decoder.
48
+ num_key_value_heads (`int`, *optional*):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
+ `num_attention_heads`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
59
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
60
+ Llama 2 up to 4096, CodeLlama up to 16384.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ pad_token_id (`int`, *optional*):
69
+ Padding token id.
70
+ bos_token_id (`int`, *optional*, defaults to 1):
71
+ Beginning of stream token id.
72
+ eos_token_id (`int`, *optional*, defaults to 2):
73
+ End of stream token id.
74
+ pretraining_tp (`int`, *optional*, defaults to 1):
75
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
76
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
77
+ understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
78
+ results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`Dict`, *optional*):
84
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
85
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
86
+ accordingly.
87
+ Expected contents:
88
+ `rope_type` (`str`):
89
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
90
+ 'llama3'], with 'default' being the original RoPE implementation.
91
+ `factor` (`float`, *optional*):
92
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
93
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
94
+ original maximum pre-trained length.
95
+ `original_max_position_embeddings` (`int`, *optional*):
96
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
97
+ pretraining.
98
+ `attention_factor` (`float`, *optional*):
99
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
100
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
101
+ `factor` field to infer the suggested value.
102
+ `beta_fast` (`float`, *optional*):
103
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
104
+ ramp function. If unspecified, it defaults to 32.
105
+ `beta_slow` (`float`, *optional*):
106
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
107
+ ramp function. If unspecified, it defaults to 1.
108
+ `short_factor` (`List[float]`, *optional*):
109
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
110
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
111
+ size divided by the number of attention heads divided by 2
112
+ `long_factor` (`List[float]`, *optional*):
113
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
114
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
115
+ size divided by the number of attention heads divided by 2
116
+ `low_freq_factor` (`float`, *optional*):
117
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
118
+ `high_freq_factor` (`float`, *optional*):
119
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
120
+ attention_bias (`bool`, *optional*, defaults to `False`):
121
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
122
+ attention_dropout (`float`, *optional*, defaults to 0.0):
123
+ The dropout ratio for the attention probabilities.
124
+ mlp_bias (`bool`, *optional*, defaults to `False`):
125
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
126
+
127
+ ```python
128
+ >>> from transformers import LlamaModel, LlamaConfig
129
+
130
+ >>> # Initializing a LLaMA llama-7b style configuration
131
+ >>> configuration = LlamaConfig()
132
+
133
+ >>> # Initializing a model from the llama-7b style configuration
134
+ >>> model = LlamaModel(configuration)
135
+
136
+ >>> # Accessing the model configuration
137
+ >>> configuration = model.config
138
+ ```"""
139
+
140
+ model_type = "llama"
141
+ keys_to_ignore_at_inference = ["past_key_values"]
142
+
143
+ def __init__(
144
+ self,
145
+ vocab_size=32000,
146
+ hidden_size=4096,
147
+ intermediate_size=11008,
148
+ num_hidden_layers=32,
149
+ num_attention_heads=32,
150
+ num_key_value_heads=None,
151
+ hidden_act="silu",
152
+ max_position_embeddings=2048,
153
+ initializer_range=0.02,
154
+ rms_norm_eps=1e-6,
155
+ use_cache=True,
156
+ pad_token_id=None,
157
+ bos_token_id=1,
158
+ eos_token_id=2,
159
+ pretraining_tp=1,
160
+ tie_word_embeddings=False,
161
+ rope_theta=10000.0,
162
+ rope_scaling=None,
163
+ attention_bias=False,
164
+ attention_dropout=0.0,
165
+ mlp_bias=False,
166
+ **kwargs,
167
+ ):
168
+ self.vocab_size = vocab_size
169
+ self.max_position_embeddings = max_position_embeddings
170
+ self.hidden_size = hidden_size
171
+ self.intermediate_size = intermediate_size
172
+ self.num_hidden_layers = num_hidden_layers
173
+ self.num_attention_heads = num_attention_heads
174
+
175
+ # for backward compatibility
176
+ if num_key_value_heads is None:
177
+ num_key_value_heads = num_attention_heads
178
+
179
+ self.num_key_value_heads = num_key_value_heads
180
+ self.hidden_act = hidden_act
181
+ self.initializer_range = initializer_range
182
+ self.rms_norm_eps = rms_norm_eps
183
+ self.pretraining_tp = pretraining_tp
184
+ self.use_cache = use_cache
185
+ self.rope_theta = rope_theta
186
+ self.rope_scaling = rope_scaling
187
+ self.attention_bias = attention_bias
188
+ self.attention_dropout = attention_dropout
189
+ self.mlp_bias = mlp_bias
190
+
191
+ # Validate the correctness of rotary position embeddings parameters
192
+ # BC: if there is a 'type' field, move it to 'rope_type'.
193
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
194
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
195
+ rope_config_validation(self)
196
+
197
+ super().__init__(
198
+ pad_token_id=pad_token_id,
199
+ bos_token_id=bos_token_id,
200
+ eos_token_id=eos_token_id,
201
+ tie_word_embeddings=tie_word_embeddings,
202
+ **kwargs,
203
+ )
transformers_4_44_2__modeling_attn_mask_utils.py ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from dataclasses import dataclass
15
+ from typing import List, Optional, Tuple, Union
16
+
17
+ import torch
18
+
19
+
20
+ @dataclass
21
+ class AttentionMaskConverter:
22
+ """
23
+ A utility attention mask class that allows one to:
24
+ - Create a causal 4d mask
25
+ - Create a causal 4d mask with slided window
26
+ - Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length,
27
+ key_value_length) that can be multiplied with attention scores
28
+
29
+ Examples:
30
+
31
+ ```python
32
+ >>> import torch
33
+ >>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter
34
+
35
+ >>> converter = AttentionMaskConverter(True)
36
+ >>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, key_value_length=5, dtype=torch.float32)
37
+ tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
38
+ [-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
39
+ [-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
40
+ [-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, -3.4028e+38],
41
+ [-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, 0.0000e+00]]]])
42
+ ```
43
+
44
+ Parameters:
45
+ is_causal (`bool`):
46
+ Whether the attention mask should be a uni-directional (causal) or bi-directional mask.
47
+
48
+ sliding_window (`int`, *optional*):
49
+ Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer.
50
+ """
51
+
52
+ is_causal: bool
53
+ sliding_window: int
54
+
55
+ def __init__(self, is_causal: bool, sliding_window: Optional[int] = None):
56
+ self.is_causal = is_causal
57
+ self.sliding_window = sliding_window
58
+
59
+ if self.sliding_window is not None and self.sliding_window <= 0:
60
+ raise ValueError(
61
+ f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
62
+ )
63
+
64
+ def to_causal_4d(
65
+ self,
66
+ batch_size: int,
67
+ query_length: int,
68
+ key_value_length: int,
69
+ dtype: torch.dtype,
70
+ device: Union[torch.device, "str"] = "cpu",
71
+ ) -> Optional[torch.Tensor]:
72
+ """
73
+ Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative
74
+ bias to upper right hand triangular matrix (causal mask).
75
+ """
76
+ if not self.is_causal:
77
+ raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.")
78
+
79
+ # If shape is not cached, create a new causal mask and cache it
80
+ input_shape = (batch_size, query_length)
81
+ past_key_values_length = key_value_length - query_length
82
+
83
+ # create causal mask
84
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
85
+ causal_4d_mask = None
86
+ if input_shape[-1] > 1 or self.sliding_window is not None:
87
+ causal_4d_mask = self._make_causal_mask(
88
+ input_shape,
89
+ dtype,
90
+ device=device,
91
+ past_key_values_length=past_key_values_length,
92
+ sliding_window=self.sliding_window,
93
+ )
94
+
95
+ return causal_4d_mask
96
+
97
+ def to_4d(
98
+ self,
99
+ attention_mask_2d: torch.Tensor,
100
+ query_length: int,
101
+ dtype: torch.dtype,
102
+ key_value_length: Optional[int] = None,
103
+ ) -> torch.Tensor:
104
+ """
105
+ Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
106
+ key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is
107
+ causal, a causal mask will be added.
108
+ """
109
+ input_shape = (attention_mask_2d.shape[0], query_length)
110
+
111
+ # create causal mask
112
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
113
+ causal_4d_mask = None
114
+ if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
115
+ if key_value_length is None:
116
+ raise ValueError(
117
+ "This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
118
+ )
119
+
120
+ past_key_values_length = key_value_length - query_length
121
+ causal_4d_mask = self._make_causal_mask(
122
+ input_shape,
123
+ dtype,
124
+ device=attention_mask_2d.device,
125
+ past_key_values_length=past_key_values_length,
126
+ sliding_window=self.sliding_window,
127
+ )
128
+ elif self.sliding_window is not None:
129
+ raise NotImplementedError("Sliding window is currently only implemented for causal masking")
130
+
131
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
132
+ expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to(
133
+ attention_mask_2d.device
134
+ )
135
+
136
+ if causal_4d_mask is not None:
137
+ expanded_attn_mask = causal_4d_mask.masked_fill(expanded_attn_mask.bool(), torch.finfo(dtype).min)
138
+
139
+ # expanded_attn_mask + causal_4d_mask can cause some overflow
140
+ expanded_4d_mask = expanded_attn_mask
141
+
142
+ return expanded_4d_mask
143
+
144
+ @staticmethod
145
+ def _make_causal_mask(
146
+ input_ids_shape: torch.Size,
147
+ dtype: torch.dtype,
148
+ device: torch.device,
149
+ past_key_values_length: int = 0,
150
+ sliding_window: Optional[int] = None,
151
+ ):
152
+ """
153
+ Make causal mask used for bi-directional self-attention.
154
+ """
155
+ bsz, tgt_len = input_ids_shape
156
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
157
+ mask_cond = torch.arange(mask.size(-1), device=device)
158
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
159
+
160
+ mask = mask.to(dtype)
161
+
162
+ if past_key_values_length > 0:
163
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
164
+
165
+ # add lower triangular sliding window mask if necessary
166
+ if sliding_window is not None:
167
+ diagonal = past_key_values_length - sliding_window - 1
168
+
169
+ context_mask = torch.tril(torch.ones_like(mask, dtype=torch.bool), diagonal=diagonal)
170
+ mask.masked_fill_(context_mask, torch.finfo(dtype).min)
171
+
172
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
173
+
174
+ @staticmethod
175
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
176
+ """
177
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
178
+ """
179
+ bsz, src_len = mask.size()
180
+ tgt_len = tgt_len if tgt_len is not None else src_len
181
+
182
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
183
+
184
+ inverted_mask = 1.0 - expanded_mask
185
+
186
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
187
+
188
+ @staticmethod
189
+ def _unmask_unattended(
190
+ expanded_mask: torch.FloatTensor,
191
+ min_dtype: float,
192
+ ):
193
+ # fmt: off
194
+ """
195
+ Attend to all tokens in masked rows from the expanded attention mask, for example the relevant first rows when
196
+ using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
197
+ Details: https://github.com/pytorch/pytorch/issues/110213
198
+
199
+ `expanded_mask` is [bsz, num_masks, tgt_seq_len, src_seq_len] or [bsz, tgt_seq_len, src_seq_len].
200
+ `attention_mask` is [bsz, src_seq_len].
201
+
202
+ The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case of alibi attention bias.
203
+
204
+ For example, if `expanded_mask` is (e.g. here left-padding case)
205
+ ```
206
+ [[[[0, 0, 0],
207
+ [0, 0, 0],
208
+ [0, 0, 1]]],
209
+ [[[1, 0, 0],
210
+ [1, 1, 0],
211
+ [1, 1, 1]]],
212
+ [[[0, 0, 0],
213
+ [0, 1, 0],
214
+ [0, 1, 1]]]]
215
+ ```
216
+ then the modified `expanded_mask` will be
217
+ ```
218
+ [[[[1, 1, 1], <-- modified
219
+ [1, 1, 1], <-- modified
220
+ [0, 0, 1]]],
221
+ [[[1, 0, 0],
222
+ [1, 1, 0],
223
+ [1, 1, 1]]],
224
+ [[[1, 1, 1], <-- modified
225
+ [0, 1, 0],
226
+ [0, 1, 1]]]]
227
+ ```
228
+ """
229
+ # fmt: on
230
+ if expanded_mask.dtype == torch.bool:
231
+ raise ValueError(
232
+ "AttentionMaskConverter._unmask_unattended expects a float `expanded_mask`, got a BoolTensor."
233
+ )
234
+
235
+ return expanded_mask.mul(~torch.all(expanded_mask == min_dtype, dim=-1, keepdim=True))
236
+
237
+ @staticmethod
238
+ def _ignore_causal_mask_sdpa(
239
+ attention_mask: Optional[torch.Tensor],
240
+ inputs_embeds: torch.Tensor,
241
+ past_key_values_length: int,
242
+ sliding_window: Optional[int] = None,
243
+ is_training: bool = False,
244
+ ) -> bool:
245
+ """
246
+ Detects whether the optional user-specified attention_mask & the automatically created causal mask can be ignored in case PyTorch's SDPA is used, rather relying on SDPA's `is_causal` argument.
247
+
248
+ In case no token is masked in the `attention_mask` argument, if `query_length == 1` or
249
+ `key_value_length == query_length`, we rather rely on SDPA `is_causal` argument to use causal/non-causal masks,
250
+ allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed).
251
+ """
252
+
253
+ _, query_length = inputs_embeds.shape[0], inputs_embeds.shape[1]
254
+ key_value_length = query_length + past_key_values_length
255
+
256
+ is_tracing = (
257
+ torch.jit.is_tracing()
258
+ or isinstance(inputs_embeds, torch.fx.Proxy)
259
+ or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
260
+ )
261
+
262
+ ignore_causal_mask = False
263
+
264
+ if attention_mask is None:
265
+ # TODO: When tracing with TorchDynamo with fullgraph=True, the model is recompiled depending on the input shape, thus SDPA's `is_causal` argument is rightfully updated (see https://gist.github.com/fxmarty/1313f39037fc1c112508989628c57363). However, when using `torch.export` or
266
+ # or `torch.onnx.dynamo_export`, we must pass an example input, and `is_causal` behavior is hard-coded. If a user exports a model with q_len > 1, the exported model will hard-code `is_causal=True` which is in general wrong (see https://github.com/pytorch/pytorch/issues/108108).
267
+ # Thus, we only set `ignore_causal_mask = True` if the model is set to training.
268
+ #
269
+ # Besides, jit.trace can not handle the `q_len > 1` condition for `is_causal` ("TypeError: scaled_dot_product_attention(): argument 'is_causal' must be bool, not Tensor").
270
+ if (
271
+ (is_training or not is_tracing)
272
+ and (query_length == 1 or key_value_length == query_length)
273
+ and (sliding_window is None or key_value_length < sliding_window)
274
+ ):
275
+ ignore_causal_mask = True
276
+ elif sliding_window is None or key_value_length < sliding_window:
277
+ if len(attention_mask.shape) == 4:
278
+ return False
279
+ elif (is_training or not is_tracing) and torch.all(attention_mask == 1):
280
+ if query_length == 1 or key_value_length == query_length:
281
+ # For query_length == 1, causal attention and bi-directional attention are the same.
282
+ ignore_causal_mask = True
283
+
284
+ # Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation
285
+ # may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here.
286
+ # Reference: https://github.com/pytorch/pytorch/issues/108108
287
+ # TODO: maybe revisit this with https://github.com/pytorch/pytorch/pull/114823 in PyTorch 2.3.
288
+
289
+ return ignore_causal_mask
290
+
291
+
292
+ def _prepare_4d_causal_attention_mask(
293
+ attention_mask: Optional[torch.Tensor],
294
+ input_shape: Union[torch.Size, Tuple, List],
295
+ inputs_embeds: torch.Tensor,
296
+ past_key_values_length: int,
297
+ sliding_window: Optional[int] = None,
298
+ ):
299
+ """
300
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
301
+ `(batch_size, key_value_length)`
302
+
303
+ Args:
304
+ attention_mask (`torch.Tensor` or `None`):
305
+ A 2D attention mask of shape `(batch_size, key_value_length)`
306
+ input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
307
+ The input shape should be a tuple that defines `(batch_size, query_length)`.
308
+ inputs_embeds (`torch.Tensor`):
309
+ The embedded inputs as a torch Tensor.
310
+ past_key_values_length (`int`):
311
+ The length of the key value cache.
312
+ sliding_window (`int`, *optional*):
313
+ If the model uses windowed attention, a sliding window should be passed.
314
+ """
315
+ attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
316
+
317
+ key_value_length = input_shape[-1] + past_key_values_length
318
+
319
+ # 4d mask is passed through the layers
320
+ if attention_mask is not None and len(attention_mask.shape) == 2:
321
+ attention_mask = attn_mask_converter.to_4d(
322
+ attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype
323
+ )
324
+ elif attention_mask is not None and len(attention_mask.shape) == 4:
325
+ expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
326
+ if tuple(attention_mask.shape) != expected_shape:
327
+ raise ValueError(
328
+ f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
329
+ )
330
+ else:
331
+ # if the 4D mask has correct shape - invert it and fill with negative infinity
332
+ inverted_mask = 1.0 - attention_mask
333
+ attention_mask = inverted_mask.masked_fill(
334
+ inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
335
+ )
336
+ else:
337
+ attention_mask = attn_mask_converter.to_causal_4d(
338
+ input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
339
+ )
340
+
341
+ return attention_mask
342
+
343
+
344
+ # Adapted from _prepare_4d_causal_attention_mask
345
+ def _prepare_4d_causal_attention_mask_for_sdpa(
346
+ attention_mask: Optional[torch.Tensor],
347
+ input_shape: Union[torch.Size, Tuple, List],
348
+ inputs_embeds: torch.Tensor,
349
+ past_key_values_length: int,
350
+ sliding_window: Optional[int] = None,
351
+ ):
352
+ """
353
+ Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`.
354
+
355
+ In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and
356
+ `key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks,
357
+ allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed).
358
+ """
359
+ attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
360
+
361
+ key_value_length = input_shape[-1] + past_key_values_length
362
+
363
+ # torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1`
364
+ # used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing.
365
+ # TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
366
+ is_tracing = (
367
+ torch.jit.is_tracing()
368
+ or isinstance(inputs_embeds, torch.fx.Proxy)
369
+ or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
370
+ )
371
+
372
+ ignore_causal_mask = AttentionMaskConverter._ignore_causal_mask_sdpa(
373
+ attention_mask=attention_mask,
374
+ inputs_embeds=inputs_embeds,
375
+ past_key_values_length=past_key_values_length,
376
+ sliding_window=sliding_window,
377
+ )
378
+
379
+ if ignore_causal_mask:
380
+ expanded_4d_mask = None
381
+ elif attention_mask is None:
382
+ expanded_4d_mask = attn_mask_converter.to_causal_4d(
383
+ input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
384
+ )
385
+ else:
386
+ if attention_mask.dim() == 4:
387
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
388
+ if attention_mask.max() != 0:
389
+ raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
390
+ expanded_4d_mask = attention_mask
391
+ else:
392
+ expanded_4d_mask = attn_mask_converter.to_4d(
393
+ attention_mask,
394
+ input_shape[-1],
395
+ dtype=inputs_embeds.dtype,
396
+ key_value_length=key_value_length,
397
+ )
398
+
399
+ # Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when
400
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
401
+ # Details: https://github.com/pytorch/pytorch/issues/110213
402
+ if not is_tracing and expanded_4d_mask.device.type == "cuda":
403
+ expanded_4d_mask = AttentionMaskConverter._unmask_unattended(
404
+ expanded_4d_mask, min_dtype=torch.finfo(inputs_embeds.dtype).min
405
+ )
406
+
407
+ return expanded_4d_mask
408
+
409
+
410
+ def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
411
+ """
412
+ Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
413
+ `(batch_size, key_value_length)`
414
+
415
+ Args:
416
+ mask (`torch.Tensor`):
417
+ A 2D attention mask of shape `(batch_size, key_value_length)`
418
+ dtype (`torch.dtype`):
419
+ The torch dtype the created mask shall have.
420
+ tgt_len (`int`):
421
+ The target length or query length the created mask shall have.
422
+ """
423
+ return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
424
+
425
+
426
+ def _prepare_4d_attention_mask_for_sdpa(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
427
+ """
428
+ Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
429
+ `(batch_size, key_value_length)`
430
+
431
+ Args:
432
+ mask (`torch.Tensor`):
433
+ A 2D attention mask of shape `(batch_size, key_value_length)`
434
+ dtype (`torch.dtype`):
435
+ The torch dtype the created mask shall have.
436
+ tgt_len (`int`):
437
+ The target length or query length the created mask shall have.
438
+ """
439
+ _, key_value_length = mask.shape
440
+ tgt_len = tgt_len if tgt_len is not None else key_value_length
441
+
442
+ is_tracing = (
443
+ torch.jit.is_tracing()
444
+ or isinstance(mask, torch.fx.Proxy)
445
+ or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
446
+ )
447
+
448
+ # torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture data-dependent controlflows.
449
+ if not is_tracing and torch.all(mask == 1):
450
+ return None
451
+ else:
452
+ return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
453
+
454
+
455
+ def _create_4d_causal_attention_mask(
456
+ input_shape: Union[torch.Size, Tuple, List],
457
+ dtype: torch.dtype,
458
+ device: torch.device,
459
+ past_key_values_length: int = 0,
460
+ sliding_window: Optional[int] = None,
461
+ ) -> Optional[torch.Tensor]:
462
+ """
463
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)`
464
+
465
+ Args:
466
+ input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
467
+ The input shape should be a tuple that defines `(batch_size, query_length)`.
468
+ dtype (`torch.dtype`):
469
+ The torch dtype the created mask shall have.
470
+ device (`int`):
471
+ The torch device the created mask shall have.
472
+ sliding_window (`int`, *optional*):
473
+ If the model uses windowed attention, a sliding window should be passed.
474
+ """
475
+ attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
476
+
477
+ key_value_length = past_key_values_length + input_shape[-1]
478
+ attention_mask = attn_mask_converter.to_causal_4d(
479
+ input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
480
+ )
481
+
482
+ return attention_mask
transformers_4_44_2__modeling_flash_attention_utils_backward_compat.py ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import inspect
17
+ import os
18
+ from typing import Optional, Tuple, Union
19
+
20
+
21
+ import torch
22
+ import torch.nn.functional as F
23
+
24
+ from functools import lru_cache
25
+ import importlib.metadata
26
+ import importlib.util
27
+ from packaging import version
28
+
29
+ from transformers.utils import is_flash_attn_2_available
30
+
31
+
32
+ if is_flash_attn_2_available():
33
+ try:
34
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
35
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
36
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
37
+ except ImportError:
38
+ raise "Unable to import flash_attn"
39
+
40
+
41
+ def _is_package_available(pkg_name: str, return_version: bool = False) -> Union[Tuple[bool, str], bool]:
42
+ # Check if the package spec exists and grab its version to avoid importing a local directory
43
+ package_exists = importlib.util.find_spec(pkg_name) is not None
44
+ package_version = "N/A"
45
+ if package_exists:
46
+ try:
47
+ # Primary method to get the package version
48
+ package_version = importlib.metadata.version(pkg_name)
49
+ except importlib.metadata.PackageNotFoundError:
50
+ # Fallback method: Only for "torch" and versions containing "dev"
51
+ if pkg_name == "torch":
52
+ try:
53
+ package = importlib.import_module(pkg_name)
54
+ temp_version = getattr(package, "__version__", "N/A")
55
+ # Check if the version contains "dev"
56
+ if "dev" in temp_version:
57
+ package_version = temp_version
58
+ package_exists = True
59
+ else:
60
+ package_exists = False
61
+ except ImportError:
62
+ # If the package can't be imported, it's not available
63
+ package_exists = False
64
+ else:
65
+ # For packages other than "torch", don't attempt the fallback and set as not available
66
+ package_exists = False
67
+ if return_version:
68
+ return package_exists, package_version
69
+ else:
70
+ return package_exists
71
+
72
+
73
+ @lru_cache()
74
+ def is_flash_attn_greater_or_equal(library_version: str):
75
+ if not _is_package_available("flash_attn"):
76
+ return False
77
+
78
+ return version.parse(importlib.metadata.version("flash_attn")) >= version.parse(library_version)
79
+
80
+
81
+ def _get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, int]:
82
+ """
83
+ Retrieves indexing data required to repad unpadded (ragged) tensors.
84
+
85
+ Arguments:
86
+ attention_mask (`torch.Tensor`):
87
+ Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
88
+
89
+ Return:
90
+ indices (`torch.Tensor`):
91
+ The indices of non-masked tokens from the flattened input sequence.
92
+ cu_seqlens (`torch.Tensor`):
93
+ The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
94
+ max_seqlen_in_batch (`int`):
95
+ Maximum sequence length in batch.
96
+ """
97
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
98
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
99
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
100
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
101
+ return (
102
+ indices,
103
+ cu_seqlens,
104
+ max_seqlen_in_batch,
105
+ )
106
+
107
+
108
+ def _upad_input(
109
+ query_layer: torch.Tensor,
110
+ key_layer: torch.Tensor,
111
+ value_layer: torch.Tensor,
112
+ attention_mask: torch.Tensor,
113
+ query_length: int,
114
+ ):
115
+ """
116
+ Unpads query, key, and values tensors, using a single dimension for all tokens even though they belong to different batches.
117
+
118
+ This function is used instead of `flash_attn.bert_padding.unpad_input` in order to avoid the recomputation of the same intermediary
119
+ tensors for query, key, value tensors.
120
+
121
+ Arguments:
122
+ query_layer (`torch.Tensor`):
123
+ Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim).
124
+ key_layer (`torch.Tensor`):
125
+ Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
126
+ value_layer (`torch.Tensor`):
127
+ Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
128
+ attention_mask (`torch.Tensor`):
129
+ Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
130
+ query_length (`int`):
131
+ Target length.
132
+
133
+ Return:
134
+ query_layer (`torch.Tensor`):
135
+ Query state without padding. Shape: (total_target_length, num_heads, head_dim).
136
+ key_layer (`torch.Tensor`):
137
+ Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
138
+ value_layer (`torch.Tensor`):
139
+ Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
140
+ indices_q (`torch.Tensor`):
141
+ The indices of non-masked tokens from the flattened input target sequence.
142
+ (cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`):
143
+ The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
144
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`):
145
+ Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value).
146
+ """
147
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
148
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
149
+
150
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k)
151
+ value_layer = index_first_axis(
152
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
153
+ )
154
+ if query_length == kv_seq_len:
155
+ query_layer = index_first_axis(query_layer.reshape(batch_size * kv_seq_len, -1, head_dim), indices_k)
156
+ cu_seqlens_q = cu_seqlens_k
157
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
158
+ indices_q = indices_k
159
+ elif query_length == 1:
160
+ max_seqlen_in_batch_q = 1
161
+ cu_seqlens_q = torch.arange(
162
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
163
+ ) # There is a memcpy here, that is very bad.
164
+ indices_q = cu_seqlens_q[:-1]
165
+ query_layer = query_layer.squeeze(1)
166
+ else:
167
+ # The -q_len: slice assumes left padding.
168
+ attention_mask = attention_mask[:, -query_length:]
169
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
170
+
171
+ return (
172
+ query_layer,
173
+ key_layer,
174
+ value_layer,
175
+ indices_q,
176
+ (cu_seqlens_q, cu_seqlens_k),
177
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
178
+ )
179
+
180
+
181
+ def prepare_fa2_from_position_ids(query, key, value, position_ids):
182
+ """
183
+ This function returns necessary arguments to call `flash_attn_varlen_func`.
184
+ All three query, key, value states will be flattened.
185
+ Cummulative lengths of each examples in the batch will be extracted from position_ids.
186
+
187
+ NOTE: ideally cummulative lengths should be prepared at the data collator stage
188
+
189
+ Arguments:
190
+ query (`torch.Tensor`):
191
+ Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim).
192
+ key (`torch.Tensor`):
193
+ Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
194
+ value (`torch.Tensor`):
195
+ Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
196
+ position_ids (`torch.Tensor`):
197
+ Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
198
+
199
+ Return:
200
+ query (`torch.Tensor`):
201
+ Query state without padding. Shape: (total_target_length, num_heads, head_dim).
202
+ key (`torch.Tensor`):
203
+ Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
204
+ value (`torch.Tensor`):
205
+ Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
206
+ indices_q (`torch.Tensor`):
207
+ The indices of non-masked tokens from the flattened input target sequence.
208
+ (cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`):
209
+ The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
210
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`):
211
+ Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value).
212
+ """
213
+ query = query.view(-1, query.size(-2), query.size(-1))
214
+ key = key.view(-1, key.size(-2), key.size(-1))
215
+ value = value.view(-1, value.size(-2), value.size(-1))
216
+ position_ids = position_ids.flatten()
217
+ indices_q = torch.arange(position_ids.size(0), device=position_ids.device, dtype=torch.int32)
218
+
219
+ cu_seq_lens = torch.cat(
220
+ (
221
+ indices_q[position_ids == 0],
222
+ torch.tensor(position_ids.size(), device=position_ids.device, dtype=torch.int32),
223
+ )
224
+ )
225
+
226
+ max_length = position_ids.max() + 1
227
+
228
+ return (query, key, value, indices_q, (cu_seq_lens, cu_seq_lens), (max_length, max_length))
229
+
230
+
231
+ def _flash_attention_forward(
232
+ query_states: torch.Tensor,
233
+ key_states: torch.Tensor,
234
+ value_states: torch.Tensor,
235
+ attention_mask: torch.Tensor,
236
+ query_length: int,
237
+ is_causal: bool,
238
+ dropout: float = 0.0,
239
+ position_ids: Optional[torch.Tensor] = None,
240
+ softmax_scale: Optional[float] = None,
241
+ sliding_window: Optional[int] = None,
242
+ use_top_left_mask: bool = False,
243
+ softcap: Optional[float] = None,
244
+ deterministic: bool = None,
245
+ ):
246
+ """
247
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
248
+ first unpad the input, then computes the attention scores and pad the final attention scores.
249
+
250
+ Args:
251
+ query_states (`torch.Tensor`):
252
+ Input query states to be passed to Flash Attention API
253
+ key_states (`torch.Tensor`):
254
+ Input key states to be passed to Flash Attention API
255
+ value_states (`torch.Tensor`):
256
+ Input value states to be passed to Flash Attention API
257
+ attention_mask (`torch.Tensor`):
258
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
259
+ position of padding tokens and 1 for the position of non-padding tokens.
260
+ dropout (`float`):
261
+ Attention dropout
262
+ softmax_scale (`float`, *optional*):
263
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
264
+ use_top_left_mask (`bool`, defaults to `False`):
265
+ flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
266
+ softcap (`float`, *optional*):
267
+ Softcap for the attention logits, used e.g. in gemma2.
268
+ deterministic (`bool`, *optional*):
269
+ Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled.
270
+ """
271
+ if not use_top_left_mask:
272
+ causal = is_causal
273
+ else:
274
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__.
275
+ causal = is_causal and query_length != 1
276
+
277
+ # Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length).
278
+ use_sliding_windows = (
279
+ _flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window
280
+ )
281
+ flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {}
282
+
283
+ if is_flash_attn_greater_or_equal("2.4.1"):
284
+ if deterministic is None:
285
+ deterministic = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1"
286
+ flash_kwargs["deterministic"] = deterministic
287
+
288
+ if softcap is not None:
289
+ flash_kwargs["softcap"] = softcap
290
+
291
+ # Contains at least one padding token in the sequence
292
+ if attention_mask is not None:
293
+ batch_size = query_states.shape[0]
294
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input(
295
+ query_states, key_states, value_states, attention_mask, query_length
296
+ )
297
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
298
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
299
+
300
+ attn_output_unpad = flash_attn_varlen_func(
301
+ query_states,
302
+ key_states,
303
+ value_states,
304
+ cu_seqlens_q=cu_seqlens_q,
305
+ cu_seqlens_k=cu_seqlens_k,
306
+ max_seqlen_q=max_seqlen_in_batch_q,
307
+ max_seqlen_k=max_seqlen_in_batch_k,
308
+ dropout_p=dropout,
309
+ softmax_scale=softmax_scale,
310
+ causal=causal,
311
+ **flash_kwargs,
312
+ )
313
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
314
+
315
+ # If position_ids is provided and check all examples do not contain only 1 sequence, If tensor in increasing
316
+ # then we probably have one sequence, otherwise it is packed. Additionally check we are in pre-fill/training stage.
317
+ # Use `flash_attn_varlen_func` to prevent cross-example attention and also allow padding free approach
318
+ elif position_ids is not None and not (torch.diff(position_ids, dim=-1) >= 0).all() and query_length != 1:
319
+ batch_size = query_states.size(0)
320
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = prepare_fa2_from_position_ids(
321
+ query_states, key_states, value_states, position_ids
322
+ )
323
+
324
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
325
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
326
+
327
+ attn_output = flash_attn_varlen_func(
328
+ query_states,
329
+ key_states,
330
+ value_states,
331
+ cu_seqlens_q=cu_seqlens_q,
332
+ cu_seqlens_k=cu_seqlens_k,
333
+ max_seqlen_q=max_seqlen_in_batch_q,
334
+ max_seqlen_k=max_seqlen_in_batch_k,
335
+ dropout_p=dropout,
336
+ softmax_scale=softmax_scale,
337
+ causal=causal,
338
+ **flash_kwargs,
339
+ )
340
+
341
+ attn_output = attn_output.view(batch_size, -1, attn_output.size(-2), attn_output.size(-1))
342
+
343
+ else:
344
+ attn_output = flash_attn_func(
345
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs
346
+ )
347
+
348
+ return attn_output
transformers_4_44_2__modeling_outputs.py ADDED
The diff for this file is too large to render. See raw diff
 
transformers_4_44_2__modeling_rope_utils.py ADDED
@@ -0,0 +1,559 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import math
16
+ from typing import Optional, Tuple
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import is_torch_available, logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ if is_torch_available():
26
+ import torch
27
+
28
+
29
+ def _compute_default_rope_parameters(
30
+ config: Optional[PretrainedConfig] = None,
31
+ device: Optional["torch.device"] = None,
32
+ seq_len: Optional[int] = None,
33
+ **rope_kwargs,
34
+ ) -> Tuple["torch.Tensor", float]:
35
+ """
36
+ Computes the inverse frequencies according to the original RoPE implementation
37
+ Args:
38
+ config ([`~transformers.PretrainedConfig`]):
39
+ The model configuration.
40
+ device (`torch.device`):
41
+ The device to use for initialization of the inverse frequencies.
42
+ seq_len (`int`, *optional*):
43
+ The current sequence length. Unused for this type of RoPE.
44
+ rope_kwargs (`Dict`, *optional*):
45
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
46
+ Returns:
47
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
48
+ post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
49
+ """
50
+ if config is not None and len(rope_kwargs) > 0:
51
+ raise ValueError(
52
+ "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
53
+ f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
54
+ )
55
+ if len(rope_kwargs) > 0:
56
+ base = rope_kwargs["base"]
57
+ dim = rope_kwargs["dim"]
58
+ elif config is not None:
59
+ base = config.rope_theta
60
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
61
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
62
+ dim = int(head_dim * partial_rotary_factor)
63
+
64
+ attention_factor = 1.0 # Unused in this type of RoPE
65
+
66
+ # Compute the inverse frequencies
67
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
68
+ return inv_freq, attention_factor
69
+
70
+
71
+ def _compute_linear_scaling_rope_parameters(
72
+ config: Optional[PretrainedConfig] = None,
73
+ device: Optional["torch.device"] = None,
74
+ seq_len: Optional[int] = None,
75
+ **rope_kwargs,
76
+ ) -> Tuple["torch.Tensor", float]:
77
+ """
78
+ Computes the inverse frequencies with linear scaling. Credits to the Reddit user /u/kaiokendev
79
+ Args:
80
+ config ([`~transformers.PretrainedConfig`]):
81
+ The model configuration.
82
+ device (`torch.device`):
83
+ The device to use for initialization of the inverse frequencies.
84
+ seq_len (`int`, *optional*):
85
+ The current sequence length. Unused for this type of RoPE.
86
+ rope_kwargs (`Dict`, *optional*):
87
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
88
+ Returns:
89
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
90
+ post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
91
+ """
92
+ if config is not None and len(rope_kwargs) > 0:
93
+ raise ValueError(
94
+ "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
95
+ f"`_compute_linear_scaling_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
96
+ )
97
+ if len(rope_kwargs) > 0:
98
+ factor = rope_kwargs["factor"]
99
+ elif config is not None:
100
+ factor = config.rope_scaling["factor"]
101
+
102
+ # Gets the default RoPE parameters
103
+ inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
104
+
105
+ # Then applies linear scaling to the frequencies.
106
+ # NOTE: originally, scaling was applied to the position_ids. However, we get `embs = inv_freq @ position_ids`, so
107
+ # applying scaling to the inverse frequencies is equivalent.
108
+ inv_freq /= factor
109
+ return inv_freq, attention_factor
110
+
111
+
112
+ def _compute_dynamic_ntk_parameters(
113
+ config: Optional[PretrainedConfig] = None,
114
+ device: Optional["torch.device"] = None,
115
+ seq_len: Optional[int] = None,
116
+ **rope_kwargs,
117
+ ) -> Tuple["torch.Tensor", float]:
118
+ """
119
+ Computes the inverse frequencies with NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla
120
+ Args:
121
+ config ([`~transformers.PretrainedConfig`]):
122
+ The model configuration.
123
+ device (`torch.device`):
124
+ The device to use for initialization of the inverse frequencies.
125
+ seq_len (`int`, *optional*):
126
+ The current sequence length, used to update the dynamic RoPE at inference time.
127
+ rope_kwargs (`Dict`, *optional*):
128
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
129
+ Returns:
130
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
131
+ post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
132
+ """
133
+ # TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
134
+ if config is not None and len(rope_kwargs) > 0:
135
+ raise ValueError(
136
+ "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
137
+ f"`_compute_dynamic_ntk_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
138
+ )
139
+ if len(rope_kwargs) > 0:
140
+ base = rope_kwargs["base"]
141
+ dim = rope_kwargs["dim"]
142
+ max_position_embeddings = rope_kwargs["max_position_embeddings"]
143
+ factor = rope_kwargs["factor"]
144
+ elif config is not None:
145
+ base = config.rope_theta
146
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
147
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
148
+ dim = int(head_dim * partial_rotary_factor)
149
+ max_position_embeddings = config.max_position_embeddings
150
+ factor = config.rope_scaling["factor"]
151
+
152
+ attention_factor = 1.0 # Unused in this type of RoPE
153
+
154
+ # seq_len: default to max_position_embeddings, e.g. at init time
155
+ seq_len = seq_len if seq_len is not None and seq_len > max_position_embeddings else max_position_embeddings
156
+
157
+ # Compute the inverse frequencies
158
+ base = base * ((factor * seq_len / max_position_embeddings) - (factor - 1)) ** (dim / (dim - 2))
159
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
160
+ return inv_freq, attention_factor
161
+
162
+
163
+ def _compute_yarn_parameters(
164
+ config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
165
+ ) -> Tuple["torch.Tensor", float]:
166
+ """
167
+ Computes the inverse frequencies with NTK scaling. Please refer to the
168
+ [original paper](https://arxiv.org/abs/2309.00071)
169
+ Args:
170
+ config ([`~transformers.PretrainedConfig`]):
171
+ The model configuration.
172
+ device (`torch.device`):
173
+ The device to use for initialization of the inverse frequencies.
174
+ seq_len (`int`, *optional*):
175
+ The current sequence length. Unused for this type of RoPE.
176
+ rope_kwargs (`Dict`, *optional*):
177
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
178
+ Returns:
179
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
180
+ post-processing scaling factor applied to the computed cos/sin.
181
+ """
182
+ # No need to keep BC with yarn, unreleased when this new pattern was created.
183
+ if len(rope_kwargs) > 0:
184
+ raise ValueError(
185
+ f"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_yarn_parameters`, got {rope_kwargs}"
186
+ )
187
+
188
+ base = config.rope_theta
189
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
190
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
191
+ dim = int(head_dim * partial_rotary_factor)
192
+ max_position_embeddings = config.max_position_embeddings
193
+ factor = config.rope_scaling["factor"]
194
+
195
+ # Sets the attention factor as suggested in the paper
196
+ attention_factor = config.rope_scaling.get("attention_factor")
197
+ if attention_factor is None:
198
+ attention_factor = 0.1 * math.log(factor) + 1.0
199
+
200
+ # Optional config options
201
+ # beta_fast/beta_slow: as suggested in the paper, default to 32/1 (correspondingly)
202
+ beta_fast = config.rope_scaling.get("beta_fast") or 32
203
+ beta_slow = config.rope_scaling.get("beta_slow") or 1
204
+
205
+ # Compute the inverse frequencies
206
+ def find_correction_dim(num_rotations, dim, base, max_position_embeddings):
207
+ """Inverse dimension formula to find the dimension based on the number of rotations"""
208
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
209
+
210
+ def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings):
211
+ """Find dimension range bounds based on rotations"""
212
+ low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
213
+ high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
214
+ return max(low, 0), min(high, dim - 1)
215
+
216
+ def linear_ramp_factor(min, max, dim):
217
+ if min == max:
218
+ max += 0.001 # Prevent singularity
219
+
220
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
221
+ ramp_func = torch.clamp(linear_func, 0, 1)
222
+ return ramp_func
223
+
224
+ # Note on variable naming: "interpolation" comes from the original technique, where we interpolate the position IDs
225
+ # to expand the possible context length. In other words, interpolation = apply scaling factor.
226
+ pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim)
227
+ inv_freq_extrapolation = 1.0 / pos_freqs
228
+ inv_freq_interpolation = 1.0 / (factor * pos_freqs)
229
+
230
+ low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings)
231
+
232
+ # Get n-dimensional rotational scaling corrected for extrapolation
233
+ inv_freq_extrapolation_factor = 1 - linear_ramp_factor(low, high, dim // 2).float().to(device)
234
+ inv_freq = (
235
+ inv_freq_interpolation * (1 - inv_freq_extrapolation_factor)
236
+ + inv_freq_extrapolation * inv_freq_extrapolation_factor
237
+ )
238
+
239
+ return inv_freq, attention_factor
240
+
241
+
242
+ def _compute_longrope_parameters(
243
+ config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
244
+ ) -> Tuple["torch.Tensor", float]:
245
+ """
246
+ Computes the inverse frequencies with LongRoPE scaling. Please refer to the
247
+ [original implementation](https://github.com/microsoft/LongRoPE)
248
+ Args:
249
+ config ([`~transformers.PretrainedConfig`]):
250
+ The model configuration.
251
+ device (`torch.device`):
252
+ The device to use for initialization of the inverse frequencies.
253
+ seq_len (`int`, *optional*):
254
+ The current sequence length. Unused for this type of RoPE.
255
+ rope_kwargs (`Dict`, *optional*):
256
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
257
+ Returns:
258
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
259
+ post-processing scaling factor applied to the computed cos/sin.
260
+ """
261
+ # TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
262
+ # No need to keep BC with longrope, unreleased when this new pattern was created.
263
+ if len(rope_kwargs) > 0:
264
+ raise ValueError(
265
+ "Unexpected arguments: `**rope_kwargs` should be unset in `_compute_longrope_parameters`, got "
266
+ f"{rope_kwargs}"
267
+ )
268
+
269
+ base = config.rope_theta
270
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
271
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
272
+ dim = int(head_dim * partial_rotary_factor)
273
+ long_factor = config.rope_scaling["long_factor"]
274
+ short_factor = config.rope_scaling["short_factor"]
275
+ factor = config.rope_scaling.get("factor")
276
+ attention_factor = config.rope_scaling.get("attention_factor")
277
+
278
+ # NOTE: Phi3 (and potentially other models) modify `max_position_embeddings` and have a
279
+ # `original_max_position_embeddings` field containing the pretrained value. They use the ratio between these two
280
+ # values to compute the default attention scaling factor, instead of using `factor`.
281
+ if hasattr(config, "original_max_position_embeddings"):
282
+ max_position_embeddings = config.original_max_position_embeddings
283
+ expanded_max_position_embeddings = config.max_position_embeddings
284
+ factor = expanded_max_position_embeddings / max_position_embeddings
285
+ else:
286
+ max_position_embeddings = config.max_position_embeddings
287
+ expanded_max_position_embeddings = max_position_embeddings * factor
288
+
289
+ # Sets the attention factor as suggested in the paper
290
+ if attention_factor is None:
291
+ if factor <= 1.0:
292
+ attention_factor = 1.0
293
+ else:
294
+ attention_factor = math.sqrt(1 + math.log(factor) / math.log(max_position_embeddings))
295
+
296
+ # Compute the inverse frequencies -- scaled based on the target sequence length
297
+ if expanded_max_position_embeddings > max_position_embeddings:
298
+ ext_factors = torch.tensor(long_factor, dtype=torch.float32, device=device)
299
+ else:
300
+ ext_factors = torch.tensor(short_factor, dtype=torch.float32, device=device)
301
+ inv_freq_shape = torch.arange(0, dim, 2, dtype=torch.int64, device=device).float() / dim
302
+ inv_freq = 1.0 / (ext_factors * base**inv_freq_shape)
303
+
304
+ return inv_freq, attention_factor
305
+
306
+
307
+ def _compute_llama3_parameters(
308
+ config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
309
+ ) -> Tuple["torch.Tensor", float]:
310
+ """
311
+ Computes the inverse frequencies for llama 3.1.
312
+
313
+ Args:
314
+ config ([`~transformers.PretrainedConfig`]):
315
+ The model configuration.
316
+ device (`torch.device`):
317
+ The device to use for initialization of the inverse frequencies.
318
+ seq_len (`int`, *optional*):
319
+ The current sequence length. Unused for this type of RoPE.
320
+ rope_kwargs (`Dict`, *optional*):
321
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
322
+ Returns:
323
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
324
+ post-processing scaling factor applied to the computed cos/sin.
325
+ """
326
+ # Gets the default RoPE parameters
327
+ inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
328
+
329
+ factor = config.rope_scaling["factor"] # `8` in the original implementation
330
+ low_freq_factor = config.rope_scaling["low_freq_factor"] # `1` in the original implementation
331
+ high_freq_factor = config.rope_scaling["high_freq_factor"] # `4` in the original implementation
332
+ old_context_len = config.rope_scaling["original_max_position_embeddings"] # `8192` in the original implementation
333
+
334
+ low_freq_wavelen = old_context_len / low_freq_factor
335
+ high_freq_wavelen = old_context_len / high_freq_factor
336
+
337
+ wavelen = 2 * math.pi / inv_freq
338
+ # wavelen < high_freq_wavelen: do nothing
339
+ # wavelen > low_freq_wavelen: divide by factor
340
+ inv_freq_llama = torch.where(wavelen > low_freq_wavelen, inv_freq / factor, inv_freq)
341
+ # otherwise: interpolate between the two, using a smooth factor
342
+ smooth_factor = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
343
+ smoothed_inv_freq = (1 - smooth_factor) * inv_freq_llama / factor + smooth_factor * inv_freq_llama
344
+ is_medium_freq = ~(wavelen < high_freq_wavelen) * ~(wavelen > low_freq_wavelen)
345
+ inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
346
+
347
+ return inv_freq_llama, attention_factor
348
+
349
+
350
+ # This maps the "rope_type" string field in rope config to the corresponding function to compute the RoPE parameters
351
+ # from the model config. You can append new {'rope_type': callable} pairs to this dictionary to enable custom RoPE
352
+ # parameterizations, as long as the callable has the same signature.
353
+ ROPE_INIT_FUNCTIONS = {
354
+ "default": _compute_default_rope_parameters,
355
+ "linear": _compute_linear_scaling_rope_parameters,
356
+ "dynamic": _compute_dynamic_ntk_parameters,
357
+ "yarn": _compute_yarn_parameters,
358
+ "longrope": _compute_longrope_parameters,
359
+ "llama3": _compute_llama3_parameters,
360
+ }
361
+
362
+
363
+ def _check_received_keys(rope_type: str, received_keys: set, required_keys: set, optional_keys: Optional[set] = None):
364
+ """Compare the received keys in `config.rope_scaling` against the expected and optional keys"""
365
+ # BC: "rope_type" was originally "type" -- let's gracefully handle it
366
+ if "rope_type" not in received_keys and "type" in received_keys:
367
+ received_keys -= {"type"}
368
+ received_keys.add("rope_type")
369
+
370
+ missing_keys = required_keys - received_keys
371
+ if missing_keys:
372
+ raise KeyError(f"Missing required keys in `rope_scaling` for 'rope_type'='{rope_type}': {missing_keys}")
373
+
374
+ if optional_keys is not None:
375
+ unused_keys = received_keys - required_keys - optional_keys
376
+ else:
377
+ unused_keys = received_keys - required_keys
378
+ if unused_keys:
379
+ logger.warning(f"Unrecognized keys in `rope_scaling` for 'rope_type'='{rope_type}': {unused_keys}")
380
+
381
+
382
+ def _validate_default_rope_parameters(config: PretrainedConfig):
383
+ rope_scaling = config.rope_scaling
384
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
385
+ required_keys = {"rope_type"}
386
+ received_keys = set(rope_scaling.keys())
387
+ _check_received_keys(rope_type, received_keys, required_keys)
388
+
389
+
390
+ def _validate_linear_scaling_rope_parameters(config: PretrainedConfig):
391
+ rope_scaling = config.rope_scaling
392
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
393
+ required_keys = {"rope_type", "factor"}
394
+ received_keys = set(rope_scaling.keys())
395
+ _check_received_keys(rope_type, received_keys, required_keys)
396
+
397
+ factor = rope_scaling["factor"]
398
+ if factor is None or not isinstance(factor, float) or factor < 1.0:
399
+ logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
400
+
401
+
402
+ def _validate_dynamic_scaling_rope_parameters(config: PretrainedConfig):
403
+ rope_scaling = config.rope_scaling
404
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
405
+ required_keys = {"rope_type", "factor"}
406
+ # TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
407
+ optional_keys = {"original_max_position_embeddings"}
408
+ received_keys = set(rope_scaling.keys())
409
+ _check_received_keys(rope_type, received_keys, required_keys, optional_keys)
410
+
411
+ factor = rope_scaling["factor"]
412
+ if factor is None or not isinstance(factor, float) or factor < 1.0:
413
+ logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
414
+
415
+
416
+ def _validate_yarn_parameters(config: PretrainedConfig):
417
+ rope_scaling = config.rope_scaling
418
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
419
+ required_keys = {"rope_type", "factor"}
420
+ optional_keys = {"attention_factor", "beta_fast", "beta_slow"}
421
+ received_keys = set(rope_scaling.keys())
422
+ _check_received_keys(rope_type, received_keys, required_keys, optional_keys)
423
+
424
+ factor = rope_scaling["factor"]
425
+ if factor is None or not isinstance(factor, float) or factor < 1.0:
426
+ logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
427
+
428
+ attention_factor = rope_scaling.get("attention_factor")
429
+ if attention_factor is not None and (not isinstance(attention_factor, float) or attention_factor < 0):
430
+ logger.warning(
431
+ f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
432
+ )
433
+ beta_fast = rope_scaling.get("beta_fast")
434
+ if beta_fast is not None and not isinstance(beta_fast, float):
435
+ logger.warning(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}")
436
+ beta_slow = rope_scaling.get("beta_slow")
437
+ if beta_slow is not None and not isinstance(beta_slow, float):
438
+ logger.warning(f"`rope_scaling`'s beta_slow field must be a float, got {beta_slow}")
439
+
440
+ if (beta_fast or 32) < (beta_slow or 1):
441
+ logger.warning(
442
+ f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} "
443
+ f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)"
444
+ )
445
+
446
+
447
+ def _validate_longrope_parameters(config: PretrainedConfig):
448
+ rope_scaling = config.rope_scaling
449
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
450
+ required_keys = {"rope_type", "short_factor", "long_factor"}
451
+ # TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
452
+ optional_keys = {"attention_factor", "factor", "original_max_position_embeddings"}
453
+ received_keys = set(rope_scaling.keys())
454
+ _check_received_keys(rope_type, received_keys, required_keys, optional_keys)
455
+
456
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
457
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
458
+ dim = int(head_dim * partial_rotary_factor)
459
+
460
+ short_factor = rope_scaling.get("short_factor")
461
+ if not isinstance(short_factor, list) and all(isinstance(x, (int, float)) for x in short_factor):
462
+ logger.warning(f"`rope_scaling`'s short_factor field must be a list of numbers, got {short_factor}")
463
+ if not len(short_factor) == dim // 2:
464
+ logger.warning(f"`rope_scaling`'s short_factor field must have length {dim // 2}, got {len(short_factor)}")
465
+
466
+ long_factor = rope_scaling.get("long_factor")
467
+ if not isinstance(long_factor, list) and all(isinstance(x, (int, float)) for x in long_factor):
468
+ logger.warning(f"`rope_scaling`'s long_factor field must be a list of numbers, got {long_factor}")
469
+ if not len(long_factor) == dim // 2:
470
+ logger.warning(f"`rope_scaling`'s long_factor field must have length {dim // 2}, got {len(long_factor)}")
471
+
472
+ # Handle Phi3 divergence: prefer the use of `attention_factor` and/or `factor` over
473
+ # `original_max_position_embeddings` to compute internal variables. The latter lives outside `rope_scaling` and is
474
+ # unique to longrope (= undesirable)
475
+ if hasattr(config, "original_max_position_embeddings"):
476
+ logger.warning_once(
477
+ "This model has set a `original_max_position_embeddings` field, to be used together with "
478
+ "`max_position_embeddings` to determine a scaling factor. Please set the `factor` field of `rope_scaling`"
479
+ "with this ratio instead -- we recommend the use of this field over `original_max_position_embeddings`, "
480
+ "as it is compatible with most model architectures."
481
+ )
482
+ else:
483
+ factor = rope_scaling.get("factor")
484
+ if factor is None:
485
+ logger.warning("Missing required keys in `rope_scaling`: 'factor'")
486
+ elif not isinstance(factor, float) or factor < 1.0:
487
+ logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
488
+
489
+ attention_factor = rope_scaling.get("attention_factor")
490
+ if attention_factor is not None and not isinstance(attention_factor, float) or attention_factor < 0:
491
+ logger.warning(
492
+ f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
493
+ )
494
+
495
+
496
+ def _validate_llama3_parameters(config: PretrainedConfig):
497
+ rope_scaling = config.rope_scaling
498
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
499
+ required_keys = {"rope_type", "factor", "original_max_position_embeddings", "low_freq_factor", "high_freq_factor"}
500
+ received_keys = set(rope_scaling.keys())
501
+ _check_received_keys(rope_type, received_keys, required_keys)
502
+
503
+ factor = rope_scaling["factor"]
504
+ if factor is None or not isinstance(factor, float) or factor < 1.0:
505
+ logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
506
+
507
+ low_freq_factor = rope_scaling["low_freq_factor"]
508
+ high_freq_factor = rope_scaling["high_freq_factor"]
509
+ if low_freq_factor is None or not isinstance(low_freq_factor, float):
510
+ logger.warning(f"`rope_scaling`'s low_freq_factor field must be a float, got {low_freq_factor}")
511
+ if high_freq_factor is None or not isinstance(high_freq_factor, float):
512
+ logger.warning(f"`rope_scaling`'s high_freq_factor field must be a float, got {high_freq_factor}")
513
+ if high_freq_factor <= low_freq_factor:
514
+ logger.warning(
515
+ "`rope_scaling`'s high_freq_factor field must be greater than low_freq_factor, got high_freq_factor="
516
+ f"{high_freq_factor} and low_freq_factor={low_freq_factor}"
517
+ )
518
+
519
+ original_max_position_embeddings = rope_scaling["original_max_position_embeddings"]
520
+ if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int):
521
+ logger.warning(
522
+ "`rope_scaling`'s original_max_position_embeddings field must be an integer, got "
523
+ f"{original_max_position_embeddings}"
524
+ )
525
+ if original_max_position_embeddings >= config.max_position_embeddings:
526
+ logger.warning(
527
+ "`rope_scaling`'s original_max_position_embeddings field must be less than max_position_embeddings, got "
528
+ f"{original_max_position_embeddings} and max_position_embeddings={config.max_position_embeddings}"
529
+ )
530
+
531
+
532
+ # Like `ROPE_INIT_FUNCTIONS`, this validation function mapping can be dynamically updated for custom RoPE types.
533
+ ROPE_VALIDATION_FUNCTIONS = {
534
+ "default": _validate_default_rope_parameters,
535
+ "linear": _validate_linear_scaling_rope_parameters,
536
+ "dynamic": _validate_dynamic_scaling_rope_parameters,
537
+ "yarn": _validate_yarn_parameters,
538
+ "longrope": _validate_longrope_parameters,
539
+ "llama3": _validate_llama3_parameters,
540
+ }
541
+
542
+
543
+ def rope_config_validation(config: PretrainedConfig):
544
+ """
545
+ Validate the RoPE config arguments, given a `PretrainedConfig` object
546
+ """
547
+ rope_scaling = getattr(config, "rope_scaling", None) # not a default parameter in `PretrainedConfig`
548
+ if rope_scaling is None:
549
+ return
550
+
551
+ # BC: "rope_type" was originally "type"
552
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", "default"))
553
+ validation_fn = ROPE_VALIDATION_FUNCTIONS.get(rope_type)
554
+ if validation_fn is not None:
555
+ validation_fn(config)
556
+ else:
557
+ logger.warning(
558
+ f"Missing validation function mapping in `ROPE_VALIDATION_FUNCTIONS` for 'rope_type'='{rope_type}'"
559
+ )
transformers_4_44_2__pytorch_utils.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from torch import nn
16
+
17
+ ALL_LAYERNORM_LAYERS = [nn.LayerNorm]
variable_cache.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Nvidia Corporation. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from copy import deepcopy
17
+ from typing import Optional, Dict, Any, Tuple
18
+
19
+ import torch
20
+ from transformers.cache_utils import Cache # used to let GenerationMixin know that we use a Cache object
21
+
22
+ from .configuration_decilm import DeciLMConfig, AttentionConfig
23
+ from .transformers_4_44_2__cache_utils import Cache as Cache_4_44_2, StaticCache
24
+
25
+
26
+ class VariableCache(Cache_4_44_2, Cache):
27
+ """
28
+ A Cache object that supports a different Cache implementation for every layer,
29
+ including layers without any kv-cache.
30
+ Implemented using a list of Cache objects, each represents a "model" with 1 layer.
31
+ The default implementation for the layer caches is StaticCache.
32
+ The cache of each layer is allocated to the same gpu as the layer itself.
33
+ """
34
+
35
+ def __init__(self,
36
+ config: DeciLMConfig,
37
+ max_batch_size: int,
38
+ max_cache_len: int | None,
39
+ device: torch.device | str | None = None,
40
+ dtype: torch.dtype | None = None,
41
+ ):
42
+ Cache_4_44_2.__init__(self)
43
+
44
+ self.config = config
45
+ self.max_batch_size = max_batch_size
46
+ self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
47
+ self.dtype = dtype
48
+
49
+ self.layer_caches: list[Cache | None] = [None] * config.num_hidden_layers
50
+
51
+ def update(
52
+ self,
53
+ key_states: torch.Tensor,
54
+ value_states: torch.Tensor,
55
+ layer_idx: int,
56
+ cache_kwargs: Optional[Dict[str, Any]] = None,
57
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
58
+ layer_cache = self.layer_caches[layer_idx]
59
+
60
+ if layer_cache is None:
61
+ block_config = self.config.block_configs[layer_idx]
62
+ layer_cache = self._init_layer_cache(attention_config=block_config.attention, device=key_states.device)
63
+ assert layer_cache is not None, "Trying to update the cache of a cache-less layer"
64
+ self.layer_caches[layer_idx] = layer_cache
65
+
66
+ k_out, v_out = layer_cache.update(key_states=key_states,
67
+ value_states=value_states,
68
+ layer_idx=0,
69
+ cache_kwargs=cache_kwargs)
70
+ seq_len = self.get_seq_length(layer_idx)
71
+ k_out = k_out[:, :, :seq_len, :]
72
+ v_out = v_out[:, :, :seq_len, :]
73
+ return k_out, v_out
74
+
75
+ def _init_layer_cache(self,
76
+ attention_config: AttentionConfig,
77
+ device: torch.device,
78
+ ) -> Cache | None:
79
+ if attention_config.no_op or attention_config.replace_with_linear:
80
+ return None
81
+ config = deepcopy(self.config)
82
+ config.num_key_value_heads = self.config.num_attention_heads // attention_config.n_heads_in_group
83
+ return StaticCache(config, self.max_batch_size, self.max_cache_len, device, self.dtype)
84
+
85
+ def _get_first_real_cache(self) -> Cache:
86
+ for layer_cache in self.layer_caches:
87
+ if layer_cache is not None:
88
+ return layer_cache
89
+ raise ValueError(f"No real cache found, all layer caches are None.")
90
+
91
+ def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
92
+ if layer_idx == 0 and self.layer_caches[0] is None:
93
+ try:
94
+ layer_cache = self._get_first_real_cache()
95
+ except ValueError:
96
+ return 0
97
+ else:
98
+ layer_cache = self.layer_caches[layer_idx]
99
+ return layer_cache.get_seq_length()
100
+
101
+ def get_max_length(self) -> Optional[int]:
102
+ """Returns the maximum sequence length of the cached states."""
103
+ return self.max_cache_len
104
+
105
+ def reset(self):
106
+ for layer_cache in self.layer_caches:
107
+ if hasattr(layer_cache, "reset"):
108
+ layer_cache.reset()