liamcripwell
commited on
Commit
•
b5f53bc
1
Parent(s):
ee1e376
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,94 @@
|
|
1 |
---
|
2 |
-
library_name: transformers
|
3 |
-
tags: []
|
4 |
-
---
|
5 |
-
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
|
80 |
-
|
|
|
81 |
|
82 |
-
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
|
|
164 |
|
165 |
-
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
|
|
|
|
|
|
174 |
|
175 |
-
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
180 |
|
181 |
-
|
182 |
|
183 |
-
|
|
|
|
|
184 |
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
-
|
|
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
|
|
|
|
|
|
192 |
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
|
|
198 |
|
199 |
-
|
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
license: mit
|
4 |
+
language:
|
5 |
|
6 |
+
- multilingual
|
7 |
|
8 |
+
tags:
|
9 |
|
10 |
+
- nlp
|
11 |
|
12 |
+
base_model: Qwen/Qwen2.5-0.5B
|
13 |
|
14 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# NuExtract-tiny-v1.5 by NuMind 🔥
|
17 |
|
18 |
+
NuExtract-v1.5 is a fine-tuning of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B), trained on a private high-quality dataset for structured information extraction. It supports long documents and several languages (English, French, Spanish, German, Portuguese, and Italian).
|
19 |
+
To use the model, provide an input text and a JSON template describing the information you need to extract.
|
20 |
|
21 |
+
Note: This model is trained to prioritize pure extraction, so in most cases all text generated by the model is present as is in the original text.
|
22 |
|
23 |
+
Try it here: <space-link>
|
24 |
|
25 |
+
We also provide a 3.8B version which is based on Phi-3.5-mini-instruct: [NuExtract-v1.5](https://huggingface.co/numind/NuExtract-v1.5)
|
26 |
|
27 |
+
**Checkout other models by NuMind:**
|
28 |
|
29 |
+
- NuExtract Version 1 Models: [0.5B](https://huggingface.co/numind/NuExtract-tiny), [3.8B](https://huggingface.co/numind/NuExtract), [7B](https://huggingface.co/numind/NuExtract-large)
|
30 |
+
- SOTA Zero-shot NER Model [NuNER Zero](https://huggingface.co/numind/NuNER_Zero)
|
31 |
+
- SOTA Multilingual Entity Recognition Foundation Model: [link](https://huggingface.co/numind/entity-recognition-multilingual-general-sota-v1)
|
32 |
+
- SOTA Sentiment Analysis Foundation Model: [English](https://huggingface.co/numind/generic-sentiment-v1), [Multilingual](https://huggingface.co/numind/generic-sentiment-multi-v1)
|
33 |
|
34 |
+
## Benchmark
|
35 |
|
36 |
+
Include result plots.
|
37 |
|
38 |
+
## Usage
|
39 |
|
40 |
+
To use the model:
|
41 |
|
42 |
+
```python
|
43 |
+
import json
|
44 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
45 |
|
46 |
+
def predict_NuExtract(model, tokenizer, texts, template, batch_size=1, max_length=10_000, max_new_tokens=4_000):
|
47 |
+
template = json.dumps(json.loads(template), indent=4)
|
48 |
+
prompts = [f"""<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>""" for text in texts]
|
49 |
+
|
50 |
+
outputs = []
|
51 |
+
with torch.no_grad():
|
52 |
+
for i in range(0, len(prompts), batch_size):
|
53 |
+
batch_prompts = prompts[i:i+batch_size]
|
54 |
+
batch_encodings = tokenizer(batch_prompts, return_tensors="pt", truncation=True, padding=True, max_length=max_length).to(model.device)
|
55 |
|
56 |
+
pred_ids = model.generate(**batch_encodings, max_new_tokens=max_new_tokens)
|
57 |
+
outputs += tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
58 |
|
59 |
+
return [output.split("<|output|>")[1] for output in outputs]
|
60 |
|
61 |
+
model_name = "numind/NuExtract-v1.5"
|
62 |
+
device = "cuda"
|
63 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
65 |
|
66 |
+
text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for
|
67 |
+
superior performance and efficiency. Mistral 7B outperforms the best open 13B
|
68 |
+
model (Llama 2) across all evaluated benchmarks, and the best released 34B
|
69 |
+
model (Llama 1) in reasoning, mathematics, and code generation. Our model
|
70 |
+
leverages grouped-query attention (GQA) for faster inference, coupled with sliding
|
71 |
+
window attention (SWA) to effectively handle sequences of arbitrary length with a
|
72 |
+
reduced inference cost. We also provide a model fine-tuned to follow instructions,
|
73 |
+
Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and
|
74 |
+
automated benchmarks. Our models are released under the Apache 2.0 license.
|
75 |
+
Code: <https://github.com/mistralai/mistral-src>
|
76 |
+
Webpage: <https://mistral.ai/news/announcing-mistral-7b/>"""
|
77 |
|
78 |
+
template = """{
|
79 |
+
"Model": {
|
80 |
+
"Name": "",
|
81 |
+
"Number of parameters": "",
|
82 |
+
"Number of max token": "",
|
83 |
+
"Architecture": []
|
84 |
+
},
|
85 |
+
"Usage": {
|
86 |
+
"Use case": [],
|
87 |
+
"Licence": ""
|
88 |
+
}
|
89 |
+
}"""
|
90 |
|
91 |
+
prediction = predict_NuExtract(model, tokenizer, [text], template)[0]
|
92 |
+
print(prediction)
|
93 |
|
94 |
+
```
|