Alexandre-Numind commited on
Commit
4e3e05e
1 Parent(s): a0bd67f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -170
README.md CHANGED
@@ -1,199 +1,94 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
4
  ---
 
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
 
 
 
 
 
 
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: mit
3
+ language:
4
+ - en
5
  ---
6
+ # Structure Extraction Model by NuMind 🔥
7
 
8
+ NuExtract-large is a fine-tuned version of phi-3-small, on a private high-quality syntatic dataset for information extraction.
9
+ To use the model, provide an input text (less than 2000 tokens) and a JSON schema describing the information you need to extract.
10
 
11
+ Note: This model is purely extractive, so each information output by the model is present as it is in the text. You can also provide an example of output to help the model understand your task more precisely.
12
 
13
+ try the base model here: https://huggingface.co/spaces/numind/NuExtract
14
 
15
+ **Checkout other models by NuMind:**
16
+ * SOTA Zero-shot NER Model [NuNER Zero](https://huggingface.co/numind/NuNER_Zero)
17
+ * SOTA Multilingual Entity Recognition Foundation Model: [link](https://huggingface.co/numind/entity-recognition-multilingual-general-sota-v1)
18
+ * SOTA Sentiment Analysis Foundation Model: [English](https://huggingface.co/numind/generic-sentiment-v1), [Multilingual](https://huggingface.co/numind/generic-sentiment-multi-v1)
19
 
 
20
 
21
+ ## Benchmark
22
 
23
+ Benchmark 0 shot (will release soon):
24
 
25
+ <p align="left">
26
+ <img src="result.png" width="600">
27
+ </p>
28
 
29
+ Benchmark fine-tunning:
 
 
 
 
 
 
30
 
31
+ <p align="left">
32
+ <img src="result_ft.png" width="600">
33
+ </p>
34
 
 
35
 
36
+ ## Usage
 
 
37
 
38
+ To use the model:
39
 
40
+ ```python
41
 
42
+ from transformers import AutoModelForCausalLM, AutoTokenizer
43
 
 
44
 
45
+ def predict_NuExtract(model,tokenizer,text, schema,example = ["","",""]):
46
+ schema = json.dumps(json.loads(schema), indent=4)
47
+ input_llm = "<|input|>\n### Template:\n" + schema + "\n"
48
+ for i in example:
49
+ if i != "":
50
+ input_llm += "### Example:\n"+ json.dumps(json.loads(i), indent=4)+"\n"
51
+
52
+ input_llm += "### Text:\n"+text +"\n<|output|>\n"
53
+ input_ids = tokenizer(input_llm, return_tensors="pt",truncation = True, max_length = 4000).to("cuda")
54
 
55
+ output = tokenizer.decode(model.generate(**input_ids)[0], skip_special_tokens=True)
56
+ return output.split("<|output|>")[1].split("<|end-output|>")[0]
57
 
 
58
 
59
+ model = AutoModelForCausalLM.from_pretrained("numind/NuExtract", trust_remote_code=True)
60
+ tokenizer = AutoTokenizer.from_pretrained("numind/NuExtract", trust_remote_code=True)
61
 
62
+ #model.to("cuda")
63
 
64
+ model.eval()
65
 
66
+ text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for
67
+ superior performance and efficiency. Mistral 7B outperforms the best open 13B
68
+ model (Llama 2) across all evaluated benchmarks, and the best released 34B
69
+ model (Llama 1) in reasoning, mathematics, and code generation. Our model
70
+ leverages grouped-query attention (GQA) for faster inference, coupled with sliding
71
+ window attention (SWA) to effectively handle sequences of arbitrary length with a
72
+ reduced inference cost. We also provide a model fine-tuned to follow instructions,
73
+ Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and
74
+ automated benchmarks. Our models are released under the Apache 2.0 license.
75
+ Code: https://github.com/mistralai/mistral-src
76
+ Webpage: https://mistral.ai/news/announcing-mistral-7b/"""
77
 
78
+ schema = """{
79
+ "Model": {
80
+ "Name": "",
81
+ "Number of parameters": "",
82
+ "Number of token": "",
83
+ "Architecture": []
84
+ },
85
+ "Usage": {
86
+ "Use case": [],
87
+ "Licence": ""
88
+ }
89
+ }"""
90
 
91
+ prediction = predict_NuExtract(model,tokenizer,text, schema,example = ["","",""])
92
 
 
93
 
94
+ ```