|
--- |
|
library_name: transformers |
|
language: |
|
- vi |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- capleaf/viVoice |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Small Vi - finetune viVoice - 70000 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: viVoice |
|
type: capleaf/viVoice |
|
config: default |
|
split: test |
|
args: 'split: train' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 14.076664076664077 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Vi - finetune viVoice - 70000 |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the viVoice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 5.7260 |
|
- Wer: 14.0767 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1.25e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- training_steps: 80000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:-----:|:---------------:|:-------:| |
|
| 0.1892 | 0.05 | 4000 | 3.5308 | 18.7775 | |
|
| 0.1551 | 0.1 | 8000 | 4.2465 | 18.1171 | |
|
| 0.1444 | 0.15 | 12000 | 4.4830 | 16.9775 | |
|
| 0.1097 | 1.0266 | 16000 | 4.4955 | 16.1357 | |
|
| 0.0966 | 1.0766 | 20000 | 4.8873 | 15.6825 | |
|
| 0.0915 | 1.1266 | 24000 | 4.8408 | 15.6177 | |
|
| 0.0853 | 2.0032 | 28000 | 5.0293 | 15.1904 | |
|
| 0.065 | 2.0532 | 32000 | 5.0290 | 15.8120 | |
|
| 0.0644 | 2.1032 | 36000 | 5.1940 | 14.5299 | |
|
| 0.0584 | 2.1532 | 40000 | 5.3418 | 15.1515 | |
|
| 0.0466 | 3.0298 | 44000 | 5.2564 | 15.2422 | |
|
| 0.0405 | 3.0798 | 48000 | 5.4065 | 14.7112 | |
|
| 0.0412 | 3.1298 | 52000 | 5.5395 | 14.1414 | |
|
| 0.0344 | 4.0064 | 56000 | 5.6079 | 14.5947 | |
|
| 0.0288 | 4.0564 | 60000 | 5.5141 | 14.4911 | |
|
| 0.0257 | 4.1064 | 64000 | 5.6983 | 14.7242 | |
|
| 0.0249 | 4.1564 | 68000 | 5.7079 | 14.0378 | |
|
| 0.0209 | 5.033 | 72000 | 5.5744 | 13.8177 | |
|
| 0.0192 | 5.083 | 76000 | 5.7272 | 14.1803 | |
|
| 0.0185 | 5.133 | 80000 | 5.7260 | 14.0767 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|