a2c-PandaReachDense-v2 / config.json
ntrant7's picture
Initial commit
0adf028
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb7c85a7130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb7c8593e40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2500000, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682816223563082308, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArLzTPlALqbueRRM/rLzTPlALqbueRRM/rLzTPlALqbueRRM/rLzTPlALqbueRRM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOA2qvsJOjr7ONsC+VlPSPwF6FD9u76C/D/zRvueXgD/Kkqi/lQzbvXqTh79Uayc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACsvNM+UAupu55FEz+1+z28JmyxujjlpbusvNM+UAupu55FEz+1+z28JmyxujjlpbusvNM+UAupu55FEz+1+z28JmyxujjlpbusvNM+UAupu55FEz+1+z28JmyxujjlpbuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41354883 -0.00515882 0.575281 ]\n [ 0.41354883 -0.00515882 0.575281 ]\n [ 0.41354883 -0.00515882 0.575281 ]\n [ 0.41354883 -0.00515882 0.575281 ]]", "desired_goal": "[[-0.3321321 -0.27794462 -0.37541813]\n [ 1.6431682 0.57998663 -1.2573068 ]\n [-0.41012618 1.0046357 -1.3169796 ]\n [-0.10695759 -1.0591881 0.65398145]]", "observation": "[[ 0.41354883 -0.00515882 0.575281 -0.01159566 -0.00135363 -0.00506273]\n [ 0.41354883 -0.00515882 0.575281 -0.01159566 -0.00135363 -0.00506273]\n [ 0.41354883 -0.00515882 0.575281 -0.01159566 -0.00135363 -0.00506273]\n [ 0.41354883 -0.00515882 0.575281 -0.01159566 -0.00135363 -0.00506273]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASD2UPHREub1tb5E+J3bsvEIawry6Noo9jNTdve4AOT1bXmA+HGVrPPlATb2weV4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01809563 -0.0904626 0.28405324]\n [-0.02886493 -0.02369416 0.0674872 ]\n [-0.10831556 0.0451669 0.21910994]\n [ 0.01436737 -0.05011079 0.21726108]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI++WTFcNVAcCUhpRSlIwBbJRLMowBdJRHQLwrTQrMC911fZQoaAZoCWgPQwjJPPIHA88FwJSGlFKUaBVLMmgWR0C8KwvWH1vmdX2UKGgGaAloD0MIqwmi7gPQ/7+UhpRSlGgVSzJoFkdAvCrtbOeJ53V9lChoBmgJaA9DCEQV/gxvVvy/lIaUUpRoFUsyaBZHQLwqzt+TeO51fZQoaAZoCWgPQwisyVNW03X6v5SGlFKUaBVLMmgWR0C8K770OEuhdX2UKGgGaAloD0MIIZBLHHkg/b+UhpRSlGgVSzJoFkdAvCt9vbXYlXV9lChoBmgJaA9DCE7soX2soPy/lIaUUpRoFUsyaBZHQLwrX0EHMU11fZQoaAZoCWgPQwil3H2OjzYDwJSGlFKUaBVLMmgWR0C8K0CnYQJ5dX2UKGgGaAloD0MIPjxLkBEwBcCUhpRSlGgVSzJoFkdAvCwrZHuqm3V9lChoBmgJaA9DCLsPQGoT5wTAlIaUUpRoFUsyaBZHQLwr6iRnvlV1fZQoaAZoCWgPQwgrFr8prPQAwJSGlFKUaBVLMmgWR0C8K8u2JBPbdX2UKGgGaAloD0MImZoEb0gjAMCUhpRSlGgVSzJoFkdAvCutcUuct3V9lChoBmgJaA9DCH0DkxtFFgLAlIaUUpRoFUsyaBZHQLwsmoqCpWF1fZQoaAZoCWgPQwhm3NRA81kBwJSGlFKUaBVLMmgWR0C8LFlNcnmadX2UKGgGaAloD0MIXYsWoG11/b+UhpRSlGgVSzJoFkdAvCw6y5Zr6HV9lChoBmgJaA9DCP7w89+DNwDAlIaUUpRoFUsyaBZHQLwsHDpTuOV1fZQoaAZoCWgPQwiQ2O4eoLsCwJSGlFKUaBVLMmgWR0C8LQd5prULdX2UKGgGaAloD0MILA5nfjVnCMCUhpRSlGgVSzJoFkdAvCzGR5kbxXV9lChoBmgJaA9DCPbwZaIIKQLAlIaUUpRoFUsyaBZHQLwsp9roGIN1fZQoaAZoCWgPQwj99J81P/4CwJSGlFKUaBVLMmgWR0C8LIlIqbz9dX2UKGgGaAloD0MIdo2WAz1UAMCUhpRSlGgVSzJoFkdAvC2ABT4tYnV9lChoBmgJaA9DCCoBMQkXMgDAlIaUUpRoFUsyaBZHQLwtPuf29L91fZQoaAZoCWgPQwiQEyaMZmX+v5SGlFKUaBVLMmgWR0C8LSBuKoAGdX2UKGgGaAloD0MImGvRArRtAcCUhpRSlGgVSzJoFkdAvC0B3LV4HHV9lChoBmgJaA9DCHIz3IDPD/y/lIaUUpRoFUsyaBZHQLwt7Zg5R0l1fZQoaAZoCWgPQwiCOA8nMN0EwJSGlFKUaBVLMmgWR0C8LaxWDHwPdX2UKGgGaAloD0MILgQ5KGGGBMCUhpRSlGgVSzJoFkdAvC2N0IToMnV9lChoBmgJaA9DCN9t3jgpLAHAlIaUUpRoFUsyaBZHQLwtbzvZyuJ1fZQoaAZoCWgPQwhz275H/dUAwJSGlFKUaBVLMmgWR0C8Ll01IiC8dX2UKGgGaAloD0MIP+YDAp2JAMCUhpRSlGgVSzJoFkdAvC4cB4lhPXV9lChoBmgJaA9DCOt0IOupVfi/lIaUUpRoFUsyaBZHQLwt/ZyuIRB1fZQoaAZoCWgPQwgGvMywURYBwJSGlFKUaBVLMmgWR0C8Ld8YMvytdX2UKGgGaAloD0MInFHzVfIx/L+UhpRSlGgVSzJoFkdAvC7O4+bExnV9lChoBmgJaA9DCDs2AvG6XgHAlIaUUpRoFUsyaBZHQLwuja2WpqB1fZQoaAZoCWgPQwhEiZY8nlb5v5SGlFKUaBVLMmgWR0C8Lm8qSX+mdX2UKGgGaAloD0MI3NjsSPV9AMCUhpRSlGgVSzJoFkdAvC5QjY7JXHV9lChoBmgJaA9DCFaeQNgp9gPAlIaUUpRoFUsyaBZHQLwvP5MDfWN1fZQoaAZoCWgPQwhr0m2JXFACwJSGlFKUaBVLMmgWR0C8Lv5uQ6p6dX2UKGgGaAloD0MIoSx8fa2L97+UhpRSlGgVSzJoFkdAvC7f8DSw4nV9lChoBmgJaA9DCD7t8NdkjQHAlIaUUpRoFUsyaBZHQLwuwWFev6l1fZQoaAZoCWgPQwi1wvS9huABwJSGlFKUaBVLMmgWR0C8L+34GlhxdX2UKGgGaAloD0MIWvROBdwTAcCUhpRSlGgVSzJoFkdAvC+tAt4A0nV9lChoBmgJaA9DCHzzGyYaJPm/lIaUUpRoFUsyaBZHQLwvjuJUHY91fZQoaAZoCWgPQwj11VWBWgwDwJSGlFKUaBVLMmgWR0C8L3CbQTmGdX2UKGgGaAloD0MIO+P74lLV/7+UhpRSlGgVSzJoFkdAvDCrGGVRk3V9lChoBmgJaA9DCK9cb5upkP6/lIaUUpRoFUsyaBZHQLwwaij+Jgt1fZQoaAZoCWgPQwgIVtXL73QFwJSGlFKUaBVLMmgWR0C8MEvzvqkedX2UKGgGaAloD0MI1qiHaHRnBMCUhpRSlGgVSzJoFkdAvDAts67ulXV9lChoBmgJaA9DCNlbyvlizwLAlIaUUpRoFUsyaBZHQLwxX97Wuox1fZQoaAZoCWgPQwgn+RG/Yg0GwJSGlFKUaBVLMmgWR0C8MR7wWnCPdX2UKGgGaAloD0MIeJlho6x/AsCUhpRSlGgVSzJoFkdAvDEA8mrsB3V9lChoBmgJaA9DCPkRv2INtwDAlIaUUpRoFUsyaBZHQLww4rO7g891fZQoaAZoCWgPQwjMft3pzjMDwJSGlFKUaBVLMmgWR0C8MiRhDw6RdX2UKGgGaAloD0MISUkPQ6tTA8CUhpRSlGgVSzJoFkdAvDHjeenQ6nV9lChoBmgJaA9DCDJZ3H9k+gbAlIaUUpRoFUsyaBZHQLwxxWJ79ht1fZQoaAZoCWgPQwi+3ZIcsEsFwJSGlFKUaBVLMmgWR0C8Macw1zhhdX2UKGgGaAloD0MIU+qScYwkBMCUhpRSlGgVSzJoFkdAvDLq45Lh73V9lChoBmgJaA9DCG+Cb5o+uwPAlIaUUpRoFUsyaBZHQLwyqf5DZ151fZQoaAZoCWgPQwhCzZAqitcEwJSGlFKUaBVLMmgWR0C8MowNb1RMdX2UKGgGaAloD0MIqfsApDYxA8CUhpRSlGgVSzJoFkdAvDJt6u4gBHV9lChoBmgJaA9DCMqNImsNBQXAlIaUUpRoFUsyaBZHQLwzscyWRih1fZQoaAZoCWgPQwg4u7VMhgMBwJSGlFKUaBVLMmgWR0C8M3DMqz7edX2UKGgGaAloD0MI+Db92Y9U/r+UhpRSlGgVSzJoFkdAvDNSpuMuOHV9lChoBmgJaA9DCCefHtsy4P2/lIaUUpRoFUsyaBZHQLwzNGYKIBR1fZQoaAZoCWgPQwhvYkhOJq78v5SGlFKUaBVLMmgWR0C8NHX003wTdX2UKGgGaAloD0MIk8g+yLIg/7+UhpRSlGgVSzJoFkdAvDQ1A1Nxl3V9lChoBmgJaA9DCDvj++JSFf+/lIaUUpRoFUsyaBZHQLw0Ft5le4V1fZQoaAZoCWgPQwhrKovCLmoCwJSGlFKUaBVLMmgWR0C8M/iml67edX2UKGgGaAloD0MIAyfbwB0oCsCUhpRSlGgVSzJoFkdAvDUQZydWhnV9lChoBmgJaA9DCIaOHVTi2gLAlIaUUpRoFUsyaBZHQLw0zz90ihZ1fZQoaAZoCWgPQwikiXeAJ00LwJSGlFKUaBVLMmgWR0C8NLDJ6po9dX2UKGgGaAloD0MIZ0eq7/wiAsCUhpRSlGgVSzJoFkdAvDSSPU8V6HV9lChoBmgJaA9DCJG1hlJ7kfy/lIaUUpRoFUsyaBZHQLw1iWBBiTd1fZQoaAZoCWgPQwhRZ+4h4fv8v5SGlFKUaBVLMmgWR0C8NUgs9SuRdX2UKGgGaAloD0MImL1sO21NA8CUhpRSlGgVSzJoFkdAvDUpwl0HQnV9lChoBmgJaA9DCKqezD/6pvy/lIaUUpRoFUsyaBZHQLw1CzErGzd1fZQoaAZoCWgPQwjHoX4XtiYCwJSGlFKUaBVLMmgWR0C8Nf+FtbcHdX2UKGgGaAloD0MI8+SaApmdA8CUhpRSlGgVSzJoFkdAvDW+VopQUHV9lChoBmgJaA9DCOTZ5VsfFgLAlIaUUpRoFUsyaBZHQLw1n+OwPiF1fZQoaAZoCWgPQwgSF4BG6ZIOwJSGlFKUaBVLMmgWR0C8NYFhCtzTdX2UKGgGaAloD0MIHJlH/mCABsCUhpRSlGgVSzJoFkdAvDZ5g4Otn3V9lChoBmgJaA9DCAfPhCaJ5f2/lIaUUpRoFUsyaBZHQLw2OE2YOUd1fZQoaAZoCWgPQwiDMo0mF0MBwJSGlFKUaBVLMmgWR0C8Nhne3x4IdX2UKGgGaAloD0MIv4I0Y9H0BMCUhpRSlGgVSzJoFkdAvDX7Vsk6cXV9lChoBmgJaA9DCEYL0LaaFQHAlIaUUpRoFUsyaBZHQLw28FERaox1fZQoaAZoCWgPQwihurn4257/v5SGlFKUaBVLMmgWR0C8Nq8aXKKYdX2UKGgGaAloD0MIF9Uiopj8/7+UhpRSlGgVSzJoFkdAvDaQqLCN0nV9lChoBmgJaA9DCKFoHsAiXwPAlIaUUpRoFUsyaBZHQLw2chUzbex1fZQoaAZoCWgPQwhbsFQX8PIGwJSGlFKUaBVLMmgWR0C8N2o//vORdX2UKGgGaAloD0MI1h9hGLBEBMCUhpRSlGgVSzJoFkdAvDcpI3BHkXV9lChoBmgJaA9DCH6LTpZabwTAlIaUUpRoFUsyaBZHQLw3CsdT5wh1fZQoaAZoCWgPQwhRhxVu+YgCwJSGlFKUaBVLMmgWR0C8Nuw7DEWJdX2UKGgGaAloD0MI88zLYfcd/7+UhpRSlGgVSzJoFkdAvDfd0q6OHXV9lChoBmgJaA9DCDKrd7gdWgDAlIaUUpRoFUsyaBZHQLw3nJkXk5p1fZQoaAZoCWgPQwi8H7dfPpkBwJSGlFKUaBVLMmgWR0C8N34kzGgjdX2UKGgGaAloD0MImWclrfgmAsCUhpRSlGgVSzJoFkdAvDdfjlxOtXV9lChoBmgJaA9DCBx9zAcEWgPAlIaUUpRoFUsyaBZHQLw4Ujvuw5h1fZQoaAZoCWgPQwizDHGsi1sEwJSGlFKUaBVLMmgWR0C8OBEC/47BdX2UKGgGaAloD0MIsRpLWBvDBsCUhpRSlGgVSzJoFkdAvDfyhf0Eo3V9lChoBmgJaA9DCKExk6gXHAPAlIaUUpRoFUsyaBZHQLw30/8EV351ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 125000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}