ntrant7 commited on
Commit
0adf028
1 Parent(s): bb02f95

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -3.36 +/- 0.59
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -2.09 +/- 0.33
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:81333a713bb58080ba7c458f53201d98794d06ef1a1b9c1ce1fedea6419aafd7
3
- size 108059
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be7d06ed7cd75a5cbc84a52535e1a9ef6d0c96ea6a04196926cf8b1f2c6124ee
3
+ size 108076
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd150165dc0>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7fd150166d80>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -19,24 +19,24 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "num_timesteps": 2000000,
23
- "_total_timesteps": 2000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1682587205543574100,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
31
  ":type:": "<class 'function'>",
32
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAAZXgPj3emLwBnQQ/AZXgPj3emLwBnQQ/AZXgPj3emLwBnQQ/AZXgPj3emLwBnQQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaaT/veR0oL9WSrs/jKovP6zerb79+pY/QdCJvsjrET+zpGw/+fl2v3PHEz/8U7W+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAABleA+Pd6YvAGdBD+35TK7QD7Quo/eobsBleA+Pd6YvAGdBD+35TK7QD7Quo/eobsBleA+Pd6YvAGdBD+35TK7QD7Quo/eobsBleA+Pd6YvAGdBD+35TK7QD7Quo/eobuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
- "achieved_goal": "[[ 0.4386368 -0.01866066 0.5180207 ]\n [ 0.4386368 -0.01866066 0.5180207 ]\n [ 0.4386368 -0.01866066 0.5180207 ]\n [ 0.4386368 -0.01866066 0.5180207 ]]",
38
- "desired_goal": "[[-0.12482531 -1.2535672 1.463206 ]\n [ 0.6861961 -0.33958948 1.1795346 ]\n [-0.26916698 0.570004 0.9243881 ]\n [-0.9647518 0.5772621 -0.35415637]]",
39
- "observation": "[[ 0.4386368 -0.01866066 0.5180207 -0.00272976 -0.00158877 -0.00493986]\n [ 0.4386368 -0.01866066 0.5180207 -0.00272976 -0.00158877 -0.00493986]\n [ 0.4386368 -0.01866066 0.5180207 -0.00272976 -0.00158877 -0.00493986]\n [ 0.4386368 -0.01866066 0.5180207 -0.00272976 -0.00158877 -0.00493986]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
@@ -44,9 +44,9 @@
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjAttvb6gx71SbFY+ydaIO77bFL5LV40+yFG5vZUrbLxfdF08HYUEPjY8h7wr2JQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
- "desired_goal": "[[-0.05787234 -0.09747456 0.20939758]\n [ 0.004176 -0.1453695 0.27605662]\n [-0.09048802 -0.01441469 0.01351651]\n [ 0.12941404 -0.0165082 0.07267793]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
@@ -56,13 +56,13 @@
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRyHJrN5h/b+UhpRSlIwBbJRLMowBdJRHQLeI/Prv9cd1fZQoaAZoCWgPQwjAQBAgQxcRwJSGlFKUaBVLMmgWR0C3iNFinYQKdX2UKGgGaAloD0MIrG9gcqPoBMCUhpRSlGgVSzJoFkdAt4im7L+xW3V9lChoBmgJaA9DCK1M+KV+fgPAlIaUUpRoFUsyaBZHQLeIeyTY/V11fZQoaAZoCWgPQwhruTMTDKf7v5SGlFKUaBVLMmgWR0C3iXEA1ejVdX2UKGgGaAloD0MIUYaqmErfBsCUhpRSlGgVSzJoFkdAt4lFWeYlY3V9lChoBmgJaA9DCN6NBYVBOQrAlIaUUpRoFUsyaBZHQLeJGrSE12t1fZQoaAZoCWgPQwhtH/KWq58CwJSGlFKUaBVLMmgWR0C3iO7kOqecdX2UKGgGaAloD0MI+P9xwoTREsCUhpRSlGgVSzJoFkdAt4nhnBciW3V9lChoBmgJaA9DCFvPEI5Zdvm/lIaUUpRoFUsyaBZHQLeJtgam4y51fZQoaAZoCWgPQwgwE0VI3c4CwJSGlFKUaBVLMmgWR0C3iYthmXgMdX2UKGgGaAloD0MIbmsLz0sFCsCUhpRSlGgVSzJoFkdAt4lfqfOD8XV9lChoBmgJaA9DCGjKTj+oS/6/lIaUUpRoFUsyaBZHQLeKWob4rSV1fZQoaAZoCWgPQwhaKm9HOI0FwJSGlFKUaBVLMmgWR0C3ii75RCQcdX2UKGgGaAloD0MIh/iHLT3aCsCUhpRSlGgVSzJoFkdAt4oEcn3L3nV9lChoBmgJaA9DCN0KYTWWsP+/lIaUUpRoFUsyaBZHQLeJ2OQyRCB1fZQoaAZoCWgPQwi9AWa+g58CwJSGlFKUaBVLMmgWR0C3itadMCcPdX2UKGgGaAloD0MIb/HwngMLDcCUhpRSlGgVSzJoFkdAt4qrFZPl+3V9lChoBmgJaA9DCEzirIia6ADAlIaUUpRoFUsyaBZHQLeKgHdGiHt1fZQoaAZoCWgPQwgY6rDCLb8CwJSGlFKUaBVLMmgWR0C3ilS+6Ae8dX2UKGgGaAloD0MIbsFSXcALDsCUhpRSlGgVSzJoFkdAt4tOEmICVHV9lChoBmgJaA9DCKkWEcXkzQjAlIaUUpRoFUsyaBZHQLeLIn8Kohp1fZQoaAZoCWgPQwhYycfuAmX8v5SGlFKUaBVLMmgWR0C3ivfd/J/5dX2UKGgGaAloD0MIyR8MPPceAsCUhpRSlGgVSzJoFkdAt4rMH+qBE3V9lChoBmgJaA9DCHAi+rX1swDAlIaUUpRoFUsyaBZHQLeLy176YVt1fZQoaAZoCWgPQwiX4T/dQKECwJSGlFKUaBVLMmgWR0C3i5/0mMOxdX2UKGgGaAloD0MIOPWB5J2jBcCUhpRSlGgVSzJoFkdAt4t1UQ04znV9lChoBmgJaA9DCBMLfEW33gPAlIaUUpRoFUsyaBZHQLeLSarWAgB1fZQoaAZoCWgPQwgMWHIVi38IwJSGlFKUaBVLMmgWR0C3jD2oaUA1dX2UKGgGaAloD0MIw9UBEHd1A8CUhpRSlGgVSzJoFkdAt4wSD28IzHV9lChoBmgJaA9DCFuYhXZOEwnAlIaUUpRoFUsyaBZHQLeL53Dej211fZQoaAZoCWgPQwhozY+/tOgFwJSGlFKUaBVLMmgWR0C3i7vD+BH1dX2UKGgGaAloD0MIDW5rC8+L/r+UhpRSlGgVSzJoFkdAt4yyUTtb93V9lChoBmgJaA9DCJNxjGSPsAbAlIaUUpRoFUsyaBZHQLeMhswL3K11fZQoaAZoCWgPQwihTKPJxRgFwJSGlFKUaBVLMmgWR0C3jFws9SuRdX2UKGgGaAloD0MIQKAzaVM1/L+UhpRSlGgVSzJoFkdAt4wwbS7XhHV9lChoBmgJaA9DCMbDew4spwXAlIaUUpRoFUsyaBZHQLeNHy44Ia91fZQoaAZoCWgPQwjy7zMuHMj7v5SGlFKUaBVLMmgWR0C3jPOPBBRidX2UKGgGaAloD0MI5IQJo1kZB8CUhpRSlGgVSzJoFkdAt4zI63iJf3V9lChoBmgJaA9DCLMkQE0tW/+/lIaUUpRoFUsyaBZHQLeMnSwW30B1fZQoaAZoCWgPQwgyq3e4HRoNwJSGlFKUaBVLMmgWR0C3jZEt7KJVdX2UKGgGaAloD0MIHF2lu+vMBMCUhpRSlGgVSzJoFkdAt41loIv8InV9lChoBmgJaA9DCEEN38K60QbAlIaUUpRoFUsyaBZHQLeNOu0kWyl1fZQoaAZoCWgPQwjSGK2jqhkRwJSGlFKUaBVLMmgWR0C3jQ8wco6TdX2UKGgGaAloD0MIraOqCaLOBsCUhpRSlGgVSzJoFkdAt43+g9Net3V9lChoBmgJaA9DCCXNH9PaVArAlIaUUpRoFUsyaBZHQLeN0uA7Ppp1fZQoaAZoCWgPQwhDrtSzILQGwJSGlFKUaBVLMmgWR0C3jagvpQk5dX2UKGgGaAloD0MIL2zNVl7yBMCUhpRSlGgVSzJoFkdAt418cT8HfXV9lChoBmgJaA9DCKmI00m2mgDAlIaUUpRoFUsyaBZHQLeObY287IV1fZQoaAZoCWgPQwh9XYb/dMMFwJSGlFKUaBVLMmgWR0C3jkHs1KoRdX2UKGgGaAloD0MIGQRWDi3SCcCUhpRSlGgVSzJoFkdAt44XOD8Lr3V9lChoBmgJaA9DCIoAp3fxXgPAlIaUUpRoFUsyaBZHQLeN63B55Z91fZQoaAZoCWgPQwjMttPWiOAAwJSGlFKUaBVLMmgWR0C3jtxVyWAxdX2UKGgGaAloD0MIKTxodt2bEcCUhpRSlGgVSzJoFkdAt46wsf7rLXV9lChoBmgJaA9DCG399J81/wvAlIaUUpRoFUsyaBZHQLeOhgZTAFh1fZQoaAZoCWgPQwhoeR7cnfUNwJSGlFKUaBVLMmgWR0C3jlpDE3sHdX2UKGgGaAloD0MIhc/WwcEeAsCUhpRSlGgVSzJoFkdAt49MqrilznV9lChoBmgJaA9DCFq77UJzPQTAlIaUUpRoFUsyaBZHQLePIQbdadN1fZQoaAZoCWgPQwjaOc0C7U4KwJSGlFKUaBVLMmgWR0C3jvZaq0dBdX2UKGgGaAloD0MIICqNmNmnBsCUhpRSlGgVSzJoFkdAt47KncclxHV9lChoBmgJaA9DCLu2t1uSowPAlIaUUpRoFUsyaBZHQLePxFUyYXx1fZQoaAZoCWgPQwgdOj3vxqIJwJSGlFKUaBVLMmgWR0C3j5i/0ulHdX2UKGgGaAloD0MIAyZw626eBcCUhpRSlGgVSzJoFkdAt49uKiwjdHV9lChoBmgJaA9DCKA4gH7fXwDAlIaUUpRoFUsyaBZHQLePQmnwXqJ1fZQoaAZoCWgPQwg7pu7KLrgBwJSGlFKUaBVLMmgWR0C3kDhLPD51dX2UKGgGaAloD0MIw9hCkIPSD8CUhpRSlGgVSzJoFkdAt5AMqEvkBHV9lChoBmgJaA9DCNO+ub96PAHAlIaUUpRoFUsyaBZHQLeP4hqCYkV1fZQoaAZoCWgPQwiyvoHJjcIBwJSGlFKUaBVLMmgWR0C3j7ZhWo3rdX2UKGgGaAloD0MIiZl9HqP8CsCUhpRSlGgVSzJoFkdAt5Cs5OrQxHV9lChoBmgJaA9DCBpPBHEezgPAlIaUUpRoFUsyaBZHQLeQgV4oqkN1fZQoaAZoCWgPQwgR5KCEmfYJwJSGlFKUaBVLMmgWR0C3kFawY+B6dX2UKGgGaAloD0MIiQlq+BaWAMCUhpRSlGgVSzJoFkdAt5Aq9Zid8XV9lChoBmgJaA9DCHiZYaOsfwLAlIaUUpRoFUsyaBZHQLeRGIu5BkZ1fZQoaAZoCWgPQwj3AN2XM1sGwJSGlFKUaBVLMmgWR0C3kOz0L+gldX2UKGgGaAloD0MIdsB1xYxw/r+UhpRSlGgVSzJoFkdAt5DCUaAFxHV9lChoBmgJaA9DCDBjCtY42wDAlIaUUpRoFUsyaBZHQLeQlpTMqz91fZQoaAZoCWgPQwgwZ7Yr9KEAwJSGlFKUaBVLMmgWR0C3kZJf+jubdX2UKGgGaAloD0MI2CrB4nBGBsCUhpRSlGgVSzJoFkdAt5Fm0IC2dHV9lChoBmgJaA9DCFx381SHvAXAlIaUUpRoFUsyaBZHQLeRPDYAbQ11fZQoaAZoCWgPQwitvyUA/5QBwJSGlFKUaBVLMmgWR0C3kRBzaK1pdX2UKGgGaAloD0MI944aE2IOBsCUhpRSlGgVSzJoFkdAt5IAdLg4wXV9lChoBmgJaA9DCM2rOqsFdgzAlIaUUpRoFUsyaBZHQLeR1OhCdBl1fZQoaAZoCWgPQwgF/BpJgrAGwJSGlFKUaBVLMmgWR0C3kapCngpCdX2UKGgGaAloD0MIrFj8prDSAcCUhpRSlGgVSzJoFkdAt5F+hUR3/3V9lChoBmgJaA9DCHmVtU3xGAPAlIaUUpRoFUsyaBZHQLeScT6SDAd1fZQoaAZoCWgPQwi4zr9d9gsLwJSGlFKUaBVLMmgWR0C3kkWVE/jbdX2UKGgGaAloD0MIC5sBLsjWEcCUhpRSlGgVSzJoFkdAt5Ia96C17nV9lChoBmgJaA9DCM/cQ8L3HgnAlIaUUpRoFUsyaBZHQLeR7ybQTmJ1fZQoaAZoCWgPQwi1U3O5wVAJwJSGlFKUaBVLMmgWR0C3kw0/fO2RdX2UKGgGaAloD0MIpaKx9ncWAMCUhpRSlGgVSzJoFkdAt5Lh32VVxXV9lChoBmgJaA9DCKlqgqj7IAjAlIaUUpRoFUsyaBZHQLeSt71qWTp1fZQoaAZoCWgPQwjkhXR4CMMCwJSGlFKUaBVLMmgWR0C3koxcE/0NdX2UKGgGaAloD0MIvady2lOy/7+UhpRSlGgVSzJoFkdAt5PGS6lLvnV9lChoBmgJaA9DCJBPyM7bmBHAlIaUUpRoFUsyaBZHQLeTmu5jH4p1fZQoaAZoCWgPQwifOetTjjkWwJSGlFKUaBVLMmgWR0C3k3CExqO+dX2UKGgGaAloD0MIRbsKKT8pCsCUhpRSlGgVSzJoFkdAt5NFBw++unV9lChoBmgJaA9DCDkoYabt3xfAlIaUUpRoFUsyaBZHQLeUhZqEeyR1fZQoaAZoCWgPQwhhUKbR5MIGwJSGlFKUaBVLMmgWR0C3lFo8+zMSdX2UKGgGaAloD0MIDR07qMQ1AMCUhpRSlGgVSzJoFkdAt5Qv7BO58XV9lChoBmgJaA9DCEhqoWRySgXAlIaUUpRoFUsyaBZHQLeUBIeHSF51ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
- "_n_updates": 100000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
@@ -72,7 +72,7 @@
72
  "normalize_advantage": false,
73
  "observation_space": {
74
  ":type:": "<class 'gym.spaces.dict.Dict'>",
75
- ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
  "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
  "_shape": null,
78
  "dtype": null,
@@ -80,7 +80,7 @@
80
  },
81
  "action_space": {
82
  ":type:": "<class 'gym.spaces.box.Box'>",
83
- ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
  "dtype": "float32",
85
  "_shape": [
86
  3
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb7c85a7130>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fb7c8593e40>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
19
  "weight_decay": 0
20
  }
21
  },
22
+ "num_timesteps": 2500000,
23
+ "_total_timesteps": 2500000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1682816223563082308,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
31
  ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArLzTPlALqbueRRM/rLzTPlALqbueRRM/rLzTPlALqbueRRM/rLzTPlALqbueRRM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOA2qvsJOjr7ONsC+VlPSPwF6FD9u76C/D/zRvueXgD/Kkqi/lQzbvXqTh79Uayc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACsvNM+UAupu55FEz+1+z28JmyxujjlpbusvNM+UAupu55FEz+1+z28JmyxujjlpbusvNM+UAupu55FEz+1+z28JmyxujjlpbusvNM+UAupu55FEz+1+z28JmyxujjlpbuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.41354883 -0.00515882 0.575281 ]\n [ 0.41354883 -0.00515882 0.575281 ]\n [ 0.41354883 -0.00515882 0.575281 ]\n [ 0.41354883 -0.00515882 0.575281 ]]",
38
+ "desired_goal": "[[-0.3321321 -0.27794462 -0.37541813]\n [ 1.6431682 0.57998663 -1.2573068 ]\n [-0.41012618 1.0046357 -1.3169796 ]\n [-0.10695759 -1.0591881 0.65398145]]",
39
+ "observation": "[[ 0.41354883 -0.00515882 0.575281 -0.01159566 -0.00135363 -0.00506273]\n [ 0.41354883 -0.00515882 0.575281 -0.01159566 -0.00135363 -0.00506273]\n [ 0.41354883 -0.00515882 0.575281 -0.01159566 -0.00135363 -0.00506273]\n [ 0.41354883 -0.00515882 0.575281 -0.01159566 -0.00135363 -0.00506273]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
 
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASD2UPHREub1tb5E+J3bsvEIawry6Noo9jNTdve4AOT1bXmA+HGVrPPlATb2weV4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.01809563 -0.0904626 0.28405324]\n [-0.02886493 -0.02369416 0.0674872 ]\n [-0.10831556 0.0451669 0.21910994]\n [ 0.01436737 -0.05011079 0.21726108]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
 
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI++WTFcNVAcCUhpRSlIwBbJRLMowBdJRHQLwrTQrMC911fZQoaAZoCWgPQwjJPPIHA88FwJSGlFKUaBVLMmgWR0C8KwvWH1vmdX2UKGgGaAloD0MIqwmi7gPQ/7+UhpRSlGgVSzJoFkdAvCrtbOeJ53V9lChoBmgJaA9DCEQV/gxvVvy/lIaUUpRoFUsyaBZHQLwqzt+TeO51fZQoaAZoCWgPQwisyVNW03X6v5SGlFKUaBVLMmgWR0C8K770OEuhdX2UKGgGaAloD0MIIZBLHHkg/b+UhpRSlGgVSzJoFkdAvCt9vbXYlXV9lChoBmgJaA9DCE7soX2soPy/lIaUUpRoFUsyaBZHQLwrX0EHMU11fZQoaAZoCWgPQwil3H2OjzYDwJSGlFKUaBVLMmgWR0C8K0CnYQJ5dX2UKGgGaAloD0MIPjxLkBEwBcCUhpRSlGgVSzJoFkdAvCwrZHuqm3V9lChoBmgJaA9DCLsPQGoT5wTAlIaUUpRoFUsyaBZHQLwr6iRnvlV1fZQoaAZoCWgPQwgrFr8prPQAwJSGlFKUaBVLMmgWR0C8K8u2JBPbdX2UKGgGaAloD0MImZoEb0gjAMCUhpRSlGgVSzJoFkdAvCutcUuct3V9lChoBmgJaA9DCH0DkxtFFgLAlIaUUpRoFUsyaBZHQLwsmoqCpWF1fZQoaAZoCWgPQwhm3NRA81kBwJSGlFKUaBVLMmgWR0C8LFlNcnmadX2UKGgGaAloD0MIXYsWoG11/b+UhpRSlGgVSzJoFkdAvCw6y5Zr6HV9lChoBmgJaA9DCP7w89+DNwDAlIaUUpRoFUsyaBZHQLwsHDpTuOV1fZQoaAZoCWgPQwiQ2O4eoLsCwJSGlFKUaBVLMmgWR0C8LQd5prULdX2UKGgGaAloD0MILA5nfjVnCMCUhpRSlGgVSzJoFkdAvCzGR5kbxXV9lChoBmgJaA9DCPbwZaIIKQLAlIaUUpRoFUsyaBZHQLwsp9roGIN1fZQoaAZoCWgPQwj99J81P/4CwJSGlFKUaBVLMmgWR0C8LIlIqbz9dX2UKGgGaAloD0MIdo2WAz1UAMCUhpRSlGgVSzJoFkdAvC2ABT4tYnV9lChoBmgJaA9DCCoBMQkXMgDAlIaUUpRoFUsyaBZHQLwtPuf29L91fZQoaAZoCWgPQwiQEyaMZmX+v5SGlFKUaBVLMmgWR0C8LSBuKoAGdX2UKGgGaAloD0MImGvRArRtAcCUhpRSlGgVSzJoFkdAvC0B3LV4HHV9lChoBmgJaA9DCHIz3IDPD/y/lIaUUpRoFUsyaBZHQLwt7Zg5R0l1fZQoaAZoCWgPQwiCOA8nMN0EwJSGlFKUaBVLMmgWR0C8LaxWDHwPdX2UKGgGaAloD0MILgQ5KGGGBMCUhpRSlGgVSzJoFkdAvC2N0IToMnV9lChoBmgJaA9DCN9t3jgpLAHAlIaUUpRoFUsyaBZHQLwtbzvZyuJ1fZQoaAZoCWgPQwhz275H/dUAwJSGlFKUaBVLMmgWR0C8Ll01IiC8dX2UKGgGaAloD0MIP+YDAp2JAMCUhpRSlGgVSzJoFkdAvC4cB4lhPXV9lChoBmgJaA9DCOt0IOupVfi/lIaUUpRoFUsyaBZHQLwt/ZyuIRB1fZQoaAZoCWgPQwgGvMywURYBwJSGlFKUaBVLMmgWR0C8Ld8YMvytdX2UKGgGaAloD0MInFHzVfIx/L+UhpRSlGgVSzJoFkdAvC7O4+bExnV9lChoBmgJaA9DCDs2AvG6XgHAlIaUUpRoFUsyaBZHQLwuja2WpqB1fZQoaAZoCWgPQwhEiZY8nlb5v5SGlFKUaBVLMmgWR0C8Lm8qSX+mdX2UKGgGaAloD0MI3NjsSPV9AMCUhpRSlGgVSzJoFkdAvC5QjY7JXHV9lChoBmgJaA9DCFaeQNgp9gPAlIaUUpRoFUsyaBZHQLwvP5MDfWN1fZQoaAZoCWgPQwhr0m2JXFACwJSGlFKUaBVLMmgWR0C8Lv5uQ6p6dX2UKGgGaAloD0MIoSx8fa2L97+UhpRSlGgVSzJoFkdAvC7f8DSw4nV9lChoBmgJaA9DCD7t8NdkjQHAlIaUUpRoFUsyaBZHQLwuwWFev6l1fZQoaAZoCWgPQwi1wvS9huABwJSGlFKUaBVLMmgWR0C8L+34GlhxdX2UKGgGaAloD0MIWvROBdwTAcCUhpRSlGgVSzJoFkdAvC+tAt4A0nV9lChoBmgJaA9DCHzzGyYaJPm/lIaUUpRoFUsyaBZHQLwvjuJUHY91fZQoaAZoCWgPQwj11VWBWgwDwJSGlFKUaBVLMmgWR0C8L3CbQTmGdX2UKGgGaAloD0MIO+P74lLV/7+UhpRSlGgVSzJoFkdAvDCrGGVRk3V9lChoBmgJaA9DCK9cb5upkP6/lIaUUpRoFUsyaBZHQLwwaij+Jgt1fZQoaAZoCWgPQwgIVtXL73QFwJSGlFKUaBVLMmgWR0C8MEvzvqkedX2UKGgGaAloD0MI1qiHaHRnBMCUhpRSlGgVSzJoFkdAvDAts67ulXV9lChoBmgJaA9DCNlbyvlizwLAlIaUUpRoFUsyaBZHQLwxX97Wuox1fZQoaAZoCWgPQwgn+RG/Yg0GwJSGlFKUaBVLMmgWR0C8MR7wWnCPdX2UKGgGaAloD0MIeJlho6x/AsCUhpRSlGgVSzJoFkdAvDEA8mrsB3V9lChoBmgJaA9DCPkRv2INtwDAlIaUUpRoFUsyaBZHQLww4rO7g891fZQoaAZoCWgPQwjMft3pzjMDwJSGlFKUaBVLMmgWR0C8MiRhDw6RdX2UKGgGaAloD0MISUkPQ6tTA8CUhpRSlGgVSzJoFkdAvDHjeenQ6nV9lChoBmgJaA9DCDJZ3H9k+gbAlIaUUpRoFUsyaBZHQLwxxWJ79ht1fZQoaAZoCWgPQwi+3ZIcsEsFwJSGlFKUaBVLMmgWR0C8Macw1zhhdX2UKGgGaAloD0MIU+qScYwkBMCUhpRSlGgVSzJoFkdAvDLq45Lh73V9lChoBmgJaA9DCG+Cb5o+uwPAlIaUUpRoFUsyaBZHQLwyqf5DZ151fZQoaAZoCWgPQwhCzZAqitcEwJSGlFKUaBVLMmgWR0C8MowNb1RMdX2UKGgGaAloD0MIqfsApDYxA8CUhpRSlGgVSzJoFkdAvDJt6u4gBHV9lChoBmgJaA9DCMqNImsNBQXAlIaUUpRoFUsyaBZHQLwzscyWRih1fZQoaAZoCWgPQwg4u7VMhgMBwJSGlFKUaBVLMmgWR0C8M3DMqz7edX2UKGgGaAloD0MI+Db92Y9U/r+UhpRSlGgVSzJoFkdAvDNSpuMuOHV9lChoBmgJaA9DCCefHtsy4P2/lIaUUpRoFUsyaBZHQLwzNGYKIBR1fZQoaAZoCWgPQwhvYkhOJq78v5SGlFKUaBVLMmgWR0C8NHX003wTdX2UKGgGaAloD0MIk8g+yLIg/7+UhpRSlGgVSzJoFkdAvDQ1A1Nxl3V9lChoBmgJaA9DCDvj++JSFf+/lIaUUpRoFUsyaBZHQLw0Ft5le4V1fZQoaAZoCWgPQwhrKovCLmoCwJSGlFKUaBVLMmgWR0C8M/iml67edX2UKGgGaAloD0MIAyfbwB0oCsCUhpRSlGgVSzJoFkdAvDUQZydWhnV9lChoBmgJaA9DCIaOHVTi2gLAlIaUUpRoFUsyaBZHQLw0zz90ihZ1fZQoaAZoCWgPQwikiXeAJ00LwJSGlFKUaBVLMmgWR0C8NLDJ6po9dX2UKGgGaAloD0MIZ0eq7/wiAsCUhpRSlGgVSzJoFkdAvDSSPU8V6HV9lChoBmgJaA9DCJG1hlJ7kfy/lIaUUpRoFUsyaBZHQLw1iWBBiTd1fZQoaAZoCWgPQwhRZ+4h4fv8v5SGlFKUaBVLMmgWR0C8NUgs9SuRdX2UKGgGaAloD0MImL1sO21NA8CUhpRSlGgVSzJoFkdAvDUpwl0HQnV9lChoBmgJaA9DCKqezD/6pvy/lIaUUpRoFUsyaBZHQLw1CzErGzd1fZQoaAZoCWgPQwjHoX4XtiYCwJSGlFKUaBVLMmgWR0C8Nf+FtbcHdX2UKGgGaAloD0MI8+SaApmdA8CUhpRSlGgVSzJoFkdAvDW+VopQUHV9lChoBmgJaA9DCOTZ5VsfFgLAlIaUUpRoFUsyaBZHQLw1n+OwPiF1fZQoaAZoCWgPQwgSF4BG6ZIOwJSGlFKUaBVLMmgWR0C8NYFhCtzTdX2UKGgGaAloD0MIHJlH/mCABsCUhpRSlGgVSzJoFkdAvDZ5g4Otn3V9lChoBmgJaA9DCAfPhCaJ5f2/lIaUUpRoFUsyaBZHQLw2OE2YOUd1fZQoaAZoCWgPQwiDMo0mF0MBwJSGlFKUaBVLMmgWR0C8Nhne3x4IdX2UKGgGaAloD0MIv4I0Y9H0BMCUhpRSlGgVSzJoFkdAvDX7Vsk6cXV9lChoBmgJaA9DCEYL0LaaFQHAlIaUUpRoFUsyaBZHQLw28FERaox1fZQoaAZoCWgPQwihurn4257/v5SGlFKUaBVLMmgWR0C8Nq8aXKKYdX2UKGgGaAloD0MIF9Uiopj8/7+UhpRSlGgVSzJoFkdAvDaQqLCN0nV9lChoBmgJaA9DCKFoHsAiXwPAlIaUUpRoFUsyaBZHQLw2chUzbex1fZQoaAZoCWgPQwhbsFQX8PIGwJSGlFKUaBVLMmgWR0C8N2o//vORdX2UKGgGaAloD0MI1h9hGLBEBMCUhpRSlGgVSzJoFkdAvDcpI3BHkXV9lChoBmgJaA9DCH6LTpZabwTAlIaUUpRoFUsyaBZHQLw3CsdT5wh1fZQoaAZoCWgPQwhRhxVu+YgCwJSGlFKUaBVLMmgWR0C8Nuw7DEWJdX2UKGgGaAloD0MI88zLYfcd/7+UhpRSlGgVSzJoFkdAvDfd0q6OHXV9lChoBmgJaA9DCDKrd7gdWgDAlIaUUpRoFUsyaBZHQLw3nJkXk5p1fZQoaAZoCWgPQwi8H7dfPpkBwJSGlFKUaBVLMmgWR0C8N34kzGgjdX2UKGgGaAloD0MImWclrfgmAsCUhpRSlGgVSzJoFkdAvDdfjlxOtXV9lChoBmgJaA9DCBx9zAcEWgPAlIaUUpRoFUsyaBZHQLw4Ujvuw5h1fZQoaAZoCWgPQwizDHGsi1sEwJSGlFKUaBVLMmgWR0C8OBEC/47BdX2UKGgGaAloD0MIsRpLWBvDBsCUhpRSlGgVSzJoFkdAvDfyhf0Eo3V9lChoBmgJaA9DCKExk6gXHAPAlIaUUpRoFUsyaBZHQLw30/8EV351ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
+ "_n_updates": 125000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
 
72
  "normalize_advantage": false,
73
  "observation_space": {
74
  ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
  "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
  "_shape": null,
78
  "dtype": null,
 
80
  },
81
  "action_space": {
82
  ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
  "dtype": "float32",
85
  "_shape": [
86
  3
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2eab3c6b900c72da89ee239fdfaa9322a9d58a20a06133ddf5c6527823035cb8
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91c9dafe80f0323d7e70a6f11b8d97b0b9d607af48e4fe0cb9a6bf311b9c226e
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:069fdc7dd16ad3998fec00bca282eb05e17eb8469d3bebffa5bf50c683e01076
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fd00285f93acc495983faca0b8529d4e63526b4c4bb485bd2d624160a9e0b41
3
  size 46014
a2c-PandaReachDense-v2/system_info.txt CHANGED
@@ -1,5 +1,5 @@
1
  - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
- - Python: 3.9.16
3
  - Stable-Baselines3: 1.8.0
4
  - PyTorch: 2.0.0+cu118
5
  - GPU Enabled: True
 
1
  - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
  - Stable-Baselines3: 1.8.0
4
  - PyTorch: 2.0.0+cu118
5
  - GPU Enabled: True
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd150165dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd150166d80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682587205543574100, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAAZXgPj3emLwBnQQ/AZXgPj3emLwBnQQ/AZXgPj3emLwBnQQ/AZXgPj3emLwBnQQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaaT/veR0oL9WSrs/jKovP6zerb79+pY/QdCJvsjrET+zpGw/+fl2v3PHEz/8U7W+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAABleA+Pd6YvAGdBD+35TK7QD7Quo/eobsBleA+Pd6YvAGdBD+35TK7QD7Quo/eobsBleA+Pd6YvAGdBD+35TK7QD7Quo/eobsBleA+Pd6YvAGdBD+35TK7QD7Quo/eobuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4386368 -0.01866066 0.5180207 ]\n [ 0.4386368 -0.01866066 0.5180207 ]\n [ 0.4386368 -0.01866066 0.5180207 ]\n [ 0.4386368 -0.01866066 0.5180207 ]]", "desired_goal": "[[-0.12482531 -1.2535672 1.463206 ]\n [ 0.6861961 -0.33958948 1.1795346 ]\n [-0.26916698 0.570004 0.9243881 ]\n [-0.9647518 0.5772621 -0.35415637]]", "observation": "[[ 0.4386368 -0.01866066 0.5180207 -0.00272976 -0.00158877 -0.00493986]\n [ 0.4386368 -0.01866066 0.5180207 -0.00272976 -0.00158877 -0.00493986]\n [ 0.4386368 -0.01866066 0.5180207 -0.00272976 -0.00158877 -0.00493986]\n [ 0.4386368 -0.01866066 0.5180207 -0.00272976 -0.00158877 -0.00493986]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjAttvb6gx71SbFY+ydaIO77bFL5LV40+yFG5vZUrbLxfdF08HYUEPjY8h7wr2JQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05787234 -0.09747456 0.20939758]\n [ 0.004176 -0.1453695 0.27605662]\n [-0.09048802 -0.01441469 0.01351651]\n [ 0.12941404 -0.0165082 0.07267793]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRyHJrN5h/b+UhpRSlIwBbJRLMowBdJRHQLeI/Prv9cd1fZQoaAZoCWgPQwjAQBAgQxcRwJSGlFKUaBVLMmgWR0C3iNFinYQKdX2UKGgGaAloD0MIrG9gcqPoBMCUhpRSlGgVSzJoFkdAt4im7L+xW3V9lChoBmgJaA9DCK1M+KV+fgPAlIaUUpRoFUsyaBZHQLeIeyTY/V11fZQoaAZoCWgPQwhruTMTDKf7v5SGlFKUaBVLMmgWR0C3iXEA1ejVdX2UKGgGaAloD0MIUYaqmErfBsCUhpRSlGgVSzJoFkdAt4lFWeYlY3V9lChoBmgJaA9DCN6NBYVBOQrAlIaUUpRoFUsyaBZHQLeJGrSE12t1fZQoaAZoCWgPQwhtH/KWq58CwJSGlFKUaBVLMmgWR0C3iO7kOqecdX2UKGgGaAloD0MI+P9xwoTREsCUhpRSlGgVSzJoFkdAt4nhnBciW3V9lChoBmgJaA9DCFvPEI5Zdvm/lIaUUpRoFUsyaBZHQLeJtgam4y51fZQoaAZoCWgPQwgwE0VI3c4CwJSGlFKUaBVLMmgWR0C3iYthmXgMdX2UKGgGaAloD0MIbmsLz0sFCsCUhpRSlGgVSzJoFkdAt4lfqfOD8XV9lChoBmgJaA9DCGjKTj+oS/6/lIaUUpRoFUsyaBZHQLeKWob4rSV1fZQoaAZoCWgPQwhaKm9HOI0FwJSGlFKUaBVLMmgWR0C3ii75RCQcdX2UKGgGaAloD0MIh/iHLT3aCsCUhpRSlGgVSzJoFkdAt4oEcn3L3nV9lChoBmgJaA9DCN0KYTWWsP+/lIaUUpRoFUsyaBZHQLeJ2OQyRCB1fZQoaAZoCWgPQwi9AWa+g58CwJSGlFKUaBVLMmgWR0C3itadMCcPdX2UKGgGaAloD0MIb/HwngMLDcCUhpRSlGgVSzJoFkdAt4qrFZPl+3V9lChoBmgJaA9DCEzirIia6ADAlIaUUpRoFUsyaBZHQLeKgHdGiHt1fZQoaAZoCWgPQwgY6rDCLb8CwJSGlFKUaBVLMmgWR0C3ilS+6Ae8dX2UKGgGaAloD0MIbsFSXcALDsCUhpRSlGgVSzJoFkdAt4tOEmICVHV9lChoBmgJaA9DCKkWEcXkzQjAlIaUUpRoFUsyaBZHQLeLIn8Kohp1fZQoaAZoCWgPQwhYycfuAmX8v5SGlFKUaBVLMmgWR0C3ivfd/J/5dX2UKGgGaAloD0MIyR8MPPceAsCUhpRSlGgVSzJoFkdAt4rMH+qBE3V9lChoBmgJaA9DCHAi+rX1swDAlIaUUpRoFUsyaBZHQLeLy176YVt1fZQoaAZoCWgPQwiX4T/dQKECwJSGlFKUaBVLMmgWR0C3i5/0mMOxdX2UKGgGaAloD0MIOPWB5J2jBcCUhpRSlGgVSzJoFkdAt4t1UQ04znV9lChoBmgJaA9DCBMLfEW33gPAlIaUUpRoFUsyaBZHQLeLSarWAgB1fZQoaAZoCWgPQwgMWHIVi38IwJSGlFKUaBVLMmgWR0C3jD2oaUA1dX2UKGgGaAloD0MIw9UBEHd1A8CUhpRSlGgVSzJoFkdAt4wSD28IzHV9lChoBmgJaA9DCFuYhXZOEwnAlIaUUpRoFUsyaBZHQLeL53Dej211fZQoaAZoCWgPQwhozY+/tOgFwJSGlFKUaBVLMmgWR0C3i7vD+BH1dX2UKGgGaAloD0MIDW5rC8+L/r+UhpRSlGgVSzJoFkdAt4yyUTtb93V9lChoBmgJaA9DCJNxjGSPsAbAlIaUUpRoFUsyaBZHQLeMhswL3K11fZQoaAZoCWgPQwihTKPJxRgFwJSGlFKUaBVLMmgWR0C3jFws9SuRdX2UKGgGaAloD0MIQKAzaVM1/L+UhpRSlGgVSzJoFkdAt4wwbS7XhHV9lChoBmgJaA9DCMbDew4spwXAlIaUUpRoFUsyaBZHQLeNHy44Ia91fZQoaAZoCWgPQwjy7zMuHMj7v5SGlFKUaBVLMmgWR0C3jPOPBBRidX2UKGgGaAloD0MI5IQJo1kZB8CUhpRSlGgVSzJoFkdAt4zI63iJf3V9lChoBmgJaA9DCLMkQE0tW/+/lIaUUpRoFUsyaBZHQLeMnSwW30B1fZQoaAZoCWgPQwgyq3e4HRoNwJSGlFKUaBVLMmgWR0C3jZEt7KJVdX2UKGgGaAloD0MIHF2lu+vMBMCUhpRSlGgVSzJoFkdAt41loIv8InV9lChoBmgJaA9DCEEN38K60QbAlIaUUpRoFUsyaBZHQLeNOu0kWyl1fZQoaAZoCWgPQwjSGK2jqhkRwJSGlFKUaBVLMmgWR0C3jQ8wco6TdX2UKGgGaAloD0MIraOqCaLOBsCUhpRSlGgVSzJoFkdAt43+g9Net3V9lChoBmgJaA9DCCXNH9PaVArAlIaUUpRoFUsyaBZHQLeN0uA7Ppp1fZQoaAZoCWgPQwhDrtSzILQGwJSGlFKUaBVLMmgWR0C3jagvpQk5dX2UKGgGaAloD0MIL2zNVl7yBMCUhpRSlGgVSzJoFkdAt418cT8HfXV9lChoBmgJaA9DCKmI00m2mgDAlIaUUpRoFUsyaBZHQLeObY287IV1fZQoaAZoCWgPQwh9XYb/dMMFwJSGlFKUaBVLMmgWR0C3jkHs1KoRdX2UKGgGaAloD0MIGQRWDi3SCcCUhpRSlGgVSzJoFkdAt44XOD8Lr3V9lChoBmgJaA9DCIoAp3fxXgPAlIaUUpRoFUsyaBZHQLeN63B55Z91fZQoaAZoCWgPQwjMttPWiOAAwJSGlFKUaBVLMmgWR0C3jtxVyWAxdX2UKGgGaAloD0MIKTxodt2bEcCUhpRSlGgVSzJoFkdAt46wsf7rLXV9lChoBmgJaA9DCG399J81/wvAlIaUUpRoFUsyaBZHQLeOhgZTAFh1fZQoaAZoCWgPQwhoeR7cnfUNwJSGlFKUaBVLMmgWR0C3jlpDE3sHdX2UKGgGaAloD0MIhc/WwcEeAsCUhpRSlGgVSzJoFkdAt49MqrilznV9lChoBmgJaA9DCFq77UJzPQTAlIaUUpRoFUsyaBZHQLePIQbdadN1fZQoaAZoCWgPQwjaOc0C7U4KwJSGlFKUaBVLMmgWR0C3jvZaq0dBdX2UKGgGaAloD0MIICqNmNmnBsCUhpRSlGgVSzJoFkdAt47KncclxHV9lChoBmgJaA9DCLu2t1uSowPAlIaUUpRoFUsyaBZHQLePxFUyYXx1fZQoaAZoCWgPQwgdOj3vxqIJwJSGlFKUaBVLMmgWR0C3j5i/0ulHdX2UKGgGaAloD0MIAyZw626eBcCUhpRSlGgVSzJoFkdAt49uKiwjdHV9lChoBmgJaA9DCKA4gH7fXwDAlIaUUpRoFUsyaBZHQLePQmnwXqJ1fZQoaAZoCWgPQwg7pu7KLrgBwJSGlFKUaBVLMmgWR0C3kDhLPD51dX2UKGgGaAloD0MIw9hCkIPSD8CUhpRSlGgVSzJoFkdAt5AMqEvkBHV9lChoBmgJaA9DCNO+ub96PAHAlIaUUpRoFUsyaBZHQLeP4hqCYkV1fZQoaAZoCWgPQwiyvoHJjcIBwJSGlFKUaBVLMmgWR0C3j7ZhWo3rdX2UKGgGaAloD0MIiZl9HqP8CsCUhpRSlGgVSzJoFkdAt5Cs5OrQxHV9lChoBmgJaA9DCBpPBHEezgPAlIaUUpRoFUsyaBZHQLeQgV4oqkN1fZQoaAZoCWgPQwgR5KCEmfYJwJSGlFKUaBVLMmgWR0C3kFawY+B6dX2UKGgGaAloD0MIiQlq+BaWAMCUhpRSlGgVSzJoFkdAt5Aq9Zid8XV9lChoBmgJaA9DCHiZYaOsfwLAlIaUUpRoFUsyaBZHQLeRGIu5BkZ1fZQoaAZoCWgPQwj3AN2XM1sGwJSGlFKUaBVLMmgWR0C3kOz0L+gldX2UKGgGaAloD0MIdsB1xYxw/r+UhpRSlGgVSzJoFkdAt5DCUaAFxHV9lChoBmgJaA9DCDBjCtY42wDAlIaUUpRoFUsyaBZHQLeQlpTMqz91fZQoaAZoCWgPQwgwZ7Yr9KEAwJSGlFKUaBVLMmgWR0C3kZJf+jubdX2UKGgGaAloD0MI2CrB4nBGBsCUhpRSlGgVSzJoFkdAt5Fm0IC2dHV9lChoBmgJaA9DCFx381SHvAXAlIaUUpRoFUsyaBZHQLeRPDYAbQ11fZQoaAZoCWgPQwitvyUA/5QBwJSGlFKUaBVLMmgWR0C3kRBzaK1pdX2UKGgGaAloD0MI944aE2IOBsCUhpRSlGgVSzJoFkdAt5IAdLg4wXV9lChoBmgJaA9DCM2rOqsFdgzAlIaUUpRoFUsyaBZHQLeR1OhCdBl1fZQoaAZoCWgPQwgF/BpJgrAGwJSGlFKUaBVLMmgWR0C3kapCngpCdX2UKGgGaAloD0MIrFj8prDSAcCUhpRSlGgVSzJoFkdAt5F+hUR3/3V9lChoBmgJaA9DCHmVtU3xGAPAlIaUUpRoFUsyaBZHQLeScT6SDAd1fZQoaAZoCWgPQwi4zr9d9gsLwJSGlFKUaBVLMmgWR0C3kkWVE/jbdX2UKGgGaAloD0MIC5sBLsjWEcCUhpRSlGgVSzJoFkdAt5Ia96C17nV9lChoBmgJaA9DCM/cQ8L3HgnAlIaUUpRoFUsyaBZHQLeR7ybQTmJ1fZQoaAZoCWgPQwi1U3O5wVAJwJSGlFKUaBVLMmgWR0C3kw0/fO2RdX2UKGgGaAloD0MIpaKx9ncWAMCUhpRSlGgVSzJoFkdAt5Lh32VVxXV9lChoBmgJaA9DCKlqgqj7IAjAlIaUUpRoFUsyaBZHQLeSt71qWTp1fZQoaAZoCWgPQwjkhXR4CMMCwJSGlFKUaBVLMmgWR0C3koxcE/0NdX2UKGgGaAloD0MIvady2lOy/7+UhpRSlGgVSzJoFkdAt5PGS6lLvnV9lChoBmgJaA9DCJBPyM7bmBHAlIaUUpRoFUsyaBZHQLeTmu5jH4p1fZQoaAZoCWgPQwifOetTjjkWwJSGlFKUaBVLMmgWR0C3k3CExqO+dX2UKGgGaAloD0MIRbsKKT8pCsCUhpRSlGgVSzJoFkdAt5NFBw++unV9lChoBmgJaA9DCDkoYabt3xfAlIaUUpRoFUsyaBZHQLeUhZqEeyR1fZQoaAZoCWgPQwhhUKbR5MIGwJSGlFKUaBVLMmgWR0C3lFo8+zMSdX2UKGgGaAloD0MIDR07qMQ1AMCUhpRSlGgVSzJoFkdAt5Qv7BO58XV9lChoBmgJaA9DCEhqoWRySgXAlIaUUpRoFUsyaBZHQLeUBIeHSF51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb7c85a7130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb7c8593e40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2500000, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682816223563082308, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArLzTPlALqbueRRM/rLzTPlALqbueRRM/rLzTPlALqbueRRM/rLzTPlALqbueRRM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOA2qvsJOjr7ONsC+VlPSPwF6FD9u76C/D/zRvueXgD/Kkqi/lQzbvXqTh79Uayc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACsvNM+UAupu55FEz+1+z28JmyxujjlpbusvNM+UAupu55FEz+1+z28JmyxujjlpbusvNM+UAupu55FEz+1+z28JmyxujjlpbusvNM+UAupu55FEz+1+z28JmyxujjlpbuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41354883 -0.00515882 0.575281 ]\n [ 0.41354883 -0.00515882 0.575281 ]\n [ 0.41354883 -0.00515882 0.575281 ]\n [ 0.41354883 -0.00515882 0.575281 ]]", "desired_goal": "[[-0.3321321 -0.27794462 -0.37541813]\n [ 1.6431682 0.57998663 -1.2573068 ]\n [-0.41012618 1.0046357 -1.3169796 ]\n [-0.10695759 -1.0591881 0.65398145]]", "observation": "[[ 0.41354883 -0.00515882 0.575281 -0.01159566 -0.00135363 -0.00506273]\n [ 0.41354883 -0.00515882 0.575281 -0.01159566 -0.00135363 -0.00506273]\n [ 0.41354883 -0.00515882 0.575281 -0.01159566 -0.00135363 -0.00506273]\n [ 0.41354883 -0.00515882 0.575281 -0.01159566 -0.00135363 -0.00506273]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASD2UPHREub1tb5E+J3bsvEIawry6Noo9jNTdve4AOT1bXmA+HGVrPPlATb2weV4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01809563 -0.0904626 0.28405324]\n [-0.02886493 -0.02369416 0.0674872 ]\n [-0.10831556 0.0451669 0.21910994]\n [ 0.01436737 -0.05011079 0.21726108]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI++WTFcNVAcCUhpRSlIwBbJRLMowBdJRHQLwrTQrMC911fZQoaAZoCWgPQwjJPPIHA88FwJSGlFKUaBVLMmgWR0C8KwvWH1vmdX2UKGgGaAloD0MIqwmi7gPQ/7+UhpRSlGgVSzJoFkdAvCrtbOeJ53V9lChoBmgJaA9DCEQV/gxvVvy/lIaUUpRoFUsyaBZHQLwqzt+TeO51fZQoaAZoCWgPQwisyVNW03X6v5SGlFKUaBVLMmgWR0C8K770OEuhdX2UKGgGaAloD0MIIZBLHHkg/b+UhpRSlGgVSzJoFkdAvCt9vbXYlXV9lChoBmgJaA9DCE7soX2soPy/lIaUUpRoFUsyaBZHQLwrX0EHMU11fZQoaAZoCWgPQwil3H2OjzYDwJSGlFKUaBVLMmgWR0C8K0CnYQJ5dX2UKGgGaAloD0MIPjxLkBEwBcCUhpRSlGgVSzJoFkdAvCwrZHuqm3V9lChoBmgJaA9DCLsPQGoT5wTAlIaUUpRoFUsyaBZHQLwr6iRnvlV1fZQoaAZoCWgPQwgrFr8prPQAwJSGlFKUaBVLMmgWR0C8K8u2JBPbdX2UKGgGaAloD0MImZoEb0gjAMCUhpRSlGgVSzJoFkdAvCutcUuct3V9lChoBmgJaA9DCH0DkxtFFgLAlIaUUpRoFUsyaBZHQLwsmoqCpWF1fZQoaAZoCWgPQwhm3NRA81kBwJSGlFKUaBVLMmgWR0C8LFlNcnmadX2UKGgGaAloD0MIXYsWoG11/b+UhpRSlGgVSzJoFkdAvCw6y5Zr6HV9lChoBmgJaA9DCP7w89+DNwDAlIaUUpRoFUsyaBZHQLwsHDpTuOV1fZQoaAZoCWgPQwiQ2O4eoLsCwJSGlFKUaBVLMmgWR0C8LQd5prULdX2UKGgGaAloD0MILA5nfjVnCMCUhpRSlGgVSzJoFkdAvCzGR5kbxXV9lChoBmgJaA9DCPbwZaIIKQLAlIaUUpRoFUsyaBZHQLwsp9roGIN1fZQoaAZoCWgPQwj99J81P/4CwJSGlFKUaBVLMmgWR0C8LIlIqbz9dX2UKGgGaAloD0MIdo2WAz1UAMCUhpRSlGgVSzJoFkdAvC2ABT4tYnV9lChoBmgJaA9DCCoBMQkXMgDAlIaUUpRoFUsyaBZHQLwtPuf29L91fZQoaAZoCWgPQwiQEyaMZmX+v5SGlFKUaBVLMmgWR0C8LSBuKoAGdX2UKGgGaAloD0MImGvRArRtAcCUhpRSlGgVSzJoFkdAvC0B3LV4HHV9lChoBmgJaA9DCHIz3IDPD/y/lIaUUpRoFUsyaBZHQLwt7Zg5R0l1fZQoaAZoCWgPQwiCOA8nMN0EwJSGlFKUaBVLMmgWR0C8LaxWDHwPdX2UKGgGaAloD0MILgQ5KGGGBMCUhpRSlGgVSzJoFkdAvC2N0IToMnV9lChoBmgJaA9DCN9t3jgpLAHAlIaUUpRoFUsyaBZHQLwtbzvZyuJ1fZQoaAZoCWgPQwhz275H/dUAwJSGlFKUaBVLMmgWR0C8Ll01IiC8dX2UKGgGaAloD0MIP+YDAp2JAMCUhpRSlGgVSzJoFkdAvC4cB4lhPXV9lChoBmgJaA9DCOt0IOupVfi/lIaUUpRoFUsyaBZHQLwt/ZyuIRB1fZQoaAZoCWgPQwgGvMywURYBwJSGlFKUaBVLMmgWR0C8Ld8YMvytdX2UKGgGaAloD0MInFHzVfIx/L+UhpRSlGgVSzJoFkdAvC7O4+bExnV9lChoBmgJaA9DCDs2AvG6XgHAlIaUUpRoFUsyaBZHQLwuja2WpqB1fZQoaAZoCWgPQwhEiZY8nlb5v5SGlFKUaBVLMmgWR0C8Lm8qSX+mdX2UKGgGaAloD0MI3NjsSPV9AMCUhpRSlGgVSzJoFkdAvC5QjY7JXHV9lChoBmgJaA9DCFaeQNgp9gPAlIaUUpRoFUsyaBZHQLwvP5MDfWN1fZQoaAZoCWgPQwhr0m2JXFACwJSGlFKUaBVLMmgWR0C8Lv5uQ6p6dX2UKGgGaAloD0MIoSx8fa2L97+UhpRSlGgVSzJoFkdAvC7f8DSw4nV9lChoBmgJaA9DCD7t8NdkjQHAlIaUUpRoFUsyaBZHQLwuwWFev6l1fZQoaAZoCWgPQwi1wvS9huABwJSGlFKUaBVLMmgWR0C8L+34GlhxdX2UKGgGaAloD0MIWvROBdwTAcCUhpRSlGgVSzJoFkdAvC+tAt4A0nV9lChoBmgJaA9DCHzzGyYaJPm/lIaUUpRoFUsyaBZHQLwvjuJUHY91fZQoaAZoCWgPQwj11VWBWgwDwJSGlFKUaBVLMmgWR0C8L3CbQTmGdX2UKGgGaAloD0MIO+P74lLV/7+UhpRSlGgVSzJoFkdAvDCrGGVRk3V9lChoBmgJaA9DCK9cb5upkP6/lIaUUpRoFUsyaBZHQLwwaij+Jgt1fZQoaAZoCWgPQwgIVtXL73QFwJSGlFKUaBVLMmgWR0C8MEvzvqkedX2UKGgGaAloD0MI1qiHaHRnBMCUhpRSlGgVSzJoFkdAvDAts67ulXV9lChoBmgJaA9DCNlbyvlizwLAlIaUUpRoFUsyaBZHQLwxX97Wuox1fZQoaAZoCWgPQwgn+RG/Yg0GwJSGlFKUaBVLMmgWR0C8MR7wWnCPdX2UKGgGaAloD0MIeJlho6x/AsCUhpRSlGgVSzJoFkdAvDEA8mrsB3V9lChoBmgJaA9DCPkRv2INtwDAlIaUUpRoFUsyaBZHQLww4rO7g891fZQoaAZoCWgPQwjMft3pzjMDwJSGlFKUaBVLMmgWR0C8MiRhDw6RdX2UKGgGaAloD0MISUkPQ6tTA8CUhpRSlGgVSzJoFkdAvDHjeenQ6nV9lChoBmgJaA9DCDJZ3H9k+gbAlIaUUpRoFUsyaBZHQLwxxWJ79ht1fZQoaAZoCWgPQwi+3ZIcsEsFwJSGlFKUaBVLMmgWR0C8Macw1zhhdX2UKGgGaAloD0MIU+qScYwkBMCUhpRSlGgVSzJoFkdAvDLq45Lh73V9lChoBmgJaA9DCG+Cb5o+uwPAlIaUUpRoFUsyaBZHQLwyqf5DZ151fZQoaAZoCWgPQwhCzZAqitcEwJSGlFKUaBVLMmgWR0C8MowNb1RMdX2UKGgGaAloD0MIqfsApDYxA8CUhpRSlGgVSzJoFkdAvDJt6u4gBHV9lChoBmgJaA9DCMqNImsNBQXAlIaUUpRoFUsyaBZHQLwzscyWRih1fZQoaAZoCWgPQwg4u7VMhgMBwJSGlFKUaBVLMmgWR0C8M3DMqz7edX2UKGgGaAloD0MI+Db92Y9U/r+UhpRSlGgVSzJoFkdAvDNSpuMuOHV9lChoBmgJaA9DCCefHtsy4P2/lIaUUpRoFUsyaBZHQLwzNGYKIBR1fZQoaAZoCWgPQwhvYkhOJq78v5SGlFKUaBVLMmgWR0C8NHX003wTdX2UKGgGaAloD0MIk8g+yLIg/7+UhpRSlGgVSzJoFkdAvDQ1A1Nxl3V9lChoBmgJaA9DCDvj++JSFf+/lIaUUpRoFUsyaBZHQLw0Ft5le4V1fZQoaAZoCWgPQwhrKovCLmoCwJSGlFKUaBVLMmgWR0C8M/iml67edX2UKGgGaAloD0MIAyfbwB0oCsCUhpRSlGgVSzJoFkdAvDUQZydWhnV9lChoBmgJaA9DCIaOHVTi2gLAlIaUUpRoFUsyaBZHQLw0zz90ihZ1fZQoaAZoCWgPQwikiXeAJ00LwJSGlFKUaBVLMmgWR0C8NLDJ6po9dX2UKGgGaAloD0MIZ0eq7/wiAsCUhpRSlGgVSzJoFkdAvDSSPU8V6HV9lChoBmgJaA9DCJG1hlJ7kfy/lIaUUpRoFUsyaBZHQLw1iWBBiTd1fZQoaAZoCWgPQwhRZ+4h4fv8v5SGlFKUaBVLMmgWR0C8NUgs9SuRdX2UKGgGaAloD0MImL1sO21NA8CUhpRSlGgVSzJoFkdAvDUpwl0HQnV9lChoBmgJaA9DCKqezD/6pvy/lIaUUpRoFUsyaBZHQLw1CzErGzd1fZQoaAZoCWgPQwjHoX4XtiYCwJSGlFKUaBVLMmgWR0C8Nf+FtbcHdX2UKGgGaAloD0MI8+SaApmdA8CUhpRSlGgVSzJoFkdAvDW+VopQUHV9lChoBmgJaA9DCOTZ5VsfFgLAlIaUUpRoFUsyaBZHQLw1n+OwPiF1fZQoaAZoCWgPQwgSF4BG6ZIOwJSGlFKUaBVLMmgWR0C8NYFhCtzTdX2UKGgGaAloD0MIHJlH/mCABsCUhpRSlGgVSzJoFkdAvDZ5g4Otn3V9lChoBmgJaA9DCAfPhCaJ5f2/lIaUUpRoFUsyaBZHQLw2OE2YOUd1fZQoaAZoCWgPQwiDMo0mF0MBwJSGlFKUaBVLMmgWR0C8Nhne3x4IdX2UKGgGaAloD0MIv4I0Y9H0BMCUhpRSlGgVSzJoFkdAvDX7Vsk6cXV9lChoBmgJaA9DCEYL0LaaFQHAlIaUUpRoFUsyaBZHQLw28FERaox1fZQoaAZoCWgPQwihurn4257/v5SGlFKUaBVLMmgWR0C8Nq8aXKKYdX2UKGgGaAloD0MIF9Uiopj8/7+UhpRSlGgVSzJoFkdAvDaQqLCN0nV9lChoBmgJaA9DCKFoHsAiXwPAlIaUUpRoFUsyaBZHQLw2chUzbex1fZQoaAZoCWgPQwhbsFQX8PIGwJSGlFKUaBVLMmgWR0C8N2o//vORdX2UKGgGaAloD0MI1h9hGLBEBMCUhpRSlGgVSzJoFkdAvDcpI3BHkXV9lChoBmgJaA9DCH6LTpZabwTAlIaUUpRoFUsyaBZHQLw3CsdT5wh1fZQoaAZoCWgPQwhRhxVu+YgCwJSGlFKUaBVLMmgWR0C8Nuw7DEWJdX2UKGgGaAloD0MI88zLYfcd/7+UhpRSlGgVSzJoFkdAvDfd0q6OHXV9lChoBmgJaA9DCDKrd7gdWgDAlIaUUpRoFUsyaBZHQLw3nJkXk5p1fZQoaAZoCWgPQwi8H7dfPpkBwJSGlFKUaBVLMmgWR0C8N34kzGgjdX2UKGgGaAloD0MImWclrfgmAsCUhpRSlGgVSzJoFkdAvDdfjlxOtXV9lChoBmgJaA9DCBx9zAcEWgPAlIaUUpRoFUsyaBZHQLw4Ujvuw5h1fZQoaAZoCWgPQwizDHGsi1sEwJSGlFKUaBVLMmgWR0C8OBEC/47BdX2UKGgGaAloD0MIsRpLWBvDBsCUhpRSlGgVSzJoFkdAvDfyhf0Eo3V9lChoBmgJaA9DCKExk6gXHAPAlIaUUpRoFUsyaBZHQLw30/8EV351ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 125000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -3.362829123437405, "std_reward": 0.5895588973834004, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-27T11:04:50.338797"}
 
1
+ {"mean_reward": -2.0924171439604833, "std_reward": 0.325550716920684, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-30T03:32:22.129427"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:998eccebaf3b907ef7c1c8893bc36cc981717f3f0e7da242440005a223e78f7c
3
- size 2381
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1905d2957b140ce4e2fedf255237da50f1de357abcf04ac2af9d625762ab499d
3
+ size 2387