|
--- |
|
tags: autotrain |
|
language: unk |
|
widget: |
|
- text: "I love AutoTrain 🤗" |
|
datasets: |
|
- nthanhha26/autotrain-data-test-project |
|
co2_eq_emissions: 13.170344687762716 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Binary Classification |
|
- Model ID: 879428192 |
|
- CO2 Emissions (in grams): 13.170344687762716 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.06465228646993637 |
|
- Accuracy: 0.9796652588768966 |
|
- Precision: 0.9843385538153949 |
|
- Recall: 0.993943472409152 |
|
- AUC: 0.9855992605071237 |
|
- F1: 0.9891176963000168 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/nthanhha26/autotrain-test-project-879428192 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("nthanhha26/autotrain-test-project-879428192", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("nthanhha26/autotrain-test-project-879428192", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoTrain", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |