|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: mistralai/Mistral-7B-Instruct-v0.2 |
|
model-index: |
|
- name: Mistral-7B-Instruct-v0.2-mirage-all-teacher-instruct-mistral-sft |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Mistral-7B-Instruct-v0.2-mirage-all-teacher-instruct-mistral-sft |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9628 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.3478 | 0.0412 | 200 | 1.2310 | |
|
| 1.3495 | 0.0824 | 400 | 1.1826 | |
|
| 1.3753 | 0.1237 | 600 | 1.1557 | |
|
| 1.3454 | 0.1649 | 800 | 1.1297 | |
|
| 1.2731 | 0.2061 | 1000 | 1.1071 | |
|
| 1.3863 | 0.2473 | 1200 | 1.0878 | |
|
| 1.2567 | 0.2885 | 1400 | 1.0777 | |
|
| 1.257 | 0.3298 | 1600 | 1.0630 | |
|
| 1.2129 | 0.3710 | 1800 | 1.0518 | |
|
| 1.1939 | 0.4122 | 2000 | 1.0405 | |
|
| 1.2658 | 0.4534 | 2200 | 1.0313 | |
|
| 1.1718 | 0.4946 | 2400 | 1.0186 | |
|
| 1.1795 | 0.5359 | 2600 | 1.0102 | |
|
| 1.1984 | 0.5771 | 2800 | 1.0008 | |
|
| 1.157 | 0.6183 | 3000 | 0.9930 | |
|
| 1.1542 | 0.6595 | 3200 | 0.9862 | |
|
| 1.1648 | 0.7007 | 3400 | 0.9802 | |
|
| 1.1403 | 0.7420 | 3600 | 0.9750 | |
|
| 1.1268 | 0.7832 | 3800 | 0.9705 | |
|
| 1.2122 | 0.8244 | 4000 | 0.9672 | |
|
| 1.0571 | 0.8656 | 4200 | 0.9649 | |
|
| 1.0903 | 0.9068 | 4400 | 0.9635 | |
|
| 1.178 | 0.9481 | 4600 | 0.9629 | |
|
| 1.1661 | 0.9893 | 4800 | 0.9628 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.1 |
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |