whisper-large-v3-az / README.md
nsalahaddinov's picture
End of training
a19a8ae verified
|
raw
history blame
2.16 kB
metadata
language:
  - az
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Large v3 Ai - Nurlan Salahaddinov
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: az
          split: None
          args: 'config: az, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 28.68525896414343

Whisper Large v3 Ai - Nurlan Salahaddinov

This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5938
  • Wer: 28.6853

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0 142.8571 1000 0.4999 27.4900
0.0 285.7143 2000 0.5441 28.2869
0.0 428.5714 3000 0.5710 28.2869
0.0 571.4286 4000 0.5869 28.6853
0.0 714.2857 5000 0.5938 28.6853

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1