bokyeong1015 commited on
Commit
c206d5b
1 Parent(s): 0103139

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Shortened LLaMA Model Card
2
+
3
+ Shortened LLaMA is a depth-pruned version of LLaMA models & variants for efficient text generation.
4
+
5
+ - **Developed by:** [Nota AI](https://www.nota.ai/)
6
+ - **License:** Non-commercial license
7
+ - **Repository:** https://github.com/Nota-NetsPresso/st-llama
8
+ - **Paper:** https://arxiv.org/abs/2402.02834
9
+
10
+ ## Compression Method
11
+ After identifying unimportant Transformer blocks, we perform one-shot pruning and light LoRA-based retraining.
12
+ <details>
13
+ <summary>
14
+ Click to see a method figure.
15
+ </summary>
16
+
17
+ <img alt="method" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st-llama_method.png" width="100%">
18
+
19
+ </details>
20
+
21
+ ## Model Links
22
+ | Source<br>Model | Pruning<br>Ratio | Pruning<br>Criterion | HF Models<br>Link |
23
+ |:---:|:---:|:---:|:---:|
24
+ | LLaMA-1-7B | 20% | PPL | [nota-ai/st-llama-1-5.5b-ppl](https://huggingface.co/nota-ai/st-llama-1-5.5b-ppl) |
25
+ | LLaMA-1-7B | 20% | Taylor+ | [nota-ai/st-llama-1-5.5b-taylor](https://huggingface.co/nota-ai/st-llama-1-5.5b-taylor) |
26
+ | Vicuna-v1.3-7B | 20% | PPL | [nota-ai/st-vicuna-v1.3-5.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-ppl) |
27
+ | Vicuna-v1.3-7B | 20% | Taylor+ | [nota-ai/st-vicuna-v1.3-5.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-taylor) |
28
+ | Vicuna-v1.3-13B | 21% | PPL | [nota-ai/st-vicuna-v1.3-10.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-ppl) |
29
+ | Vicuna-v1.3-13B | 21% | Taylor+ | [nota-ai/st-vicuna-v1.3-10.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-taylor) |
30
+
31
+ ## Zero-shot Performance & Efficiency Results
32
+ - EleutherAI/lm-evaluation-harness version [3326c54](https://github.com/EleutherAI/lm-evaluation-harness/tree/3326c547a733d598b4377e54be96e194861b964c)
33
+
34
+ <img alt="results" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st-llama_zero-shot_scores.png" width="100%">
35
+
36
+ ## License
37
+ - All rights related to this repository and the compressed models are reserved by Nota Inc.
38
+ - The intended use is strictly limited to research and non-commercial projects.
39
+
40
+ ## Acknowledgments
41
+ - [LLM-Pruner](https://github.com/horseee/LLM-Pruner), which utilizes [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness), [PEFT](https://github.com/huggingface/peft), and [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). Thanks for the pioneering work on structured pruning of LLMs!
42
+ - Meta AI's [LLaMA](https://github.com/facebookresearch/llama) and LMSYS Org's [Vicuna](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md). Thanks for the open-source LLMs!
43
+
44
+ ## Citation
45
+ ```bibtex
46
+ @article{kim2024shortened,
47
+ title={Shortened LLaMA: A Simple Depth Pruning for Large Language Models},
48
+ author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu},
49
+ journal={arXiv preprint arXiv:2402.02834},
50
+ year={2024},
51
+ url={https://arxiv.org/abs/2402.02834}
52
+ }
53
+ ```
54
+ ```bibtex
55
+ @article{kim2024mefomo,
56
+ title={Shortened LLaMA: A Simple Depth Pruning for Large Language Models},
57
+ author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu},
58
+ journal={ICLR Workshop on Mathematical and Empirical Understanding of Foundation Models (ME-FoMo)},
59
+ year={2024},
60
+ url={https://openreview.net/forum?id=18VGxuOdpu}
61
+ }
62
+ ```