Upload MnistPipe
Browse files- MyPipe.py +65 -0
- config.json +13 -2
MyPipe.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers import Pipeline
|
3 |
+
import requests
|
4 |
+
from PIL import Image
|
5 |
+
import torchvision.transforms as transforms
|
6 |
+
import torch
|
7 |
+
|
8 |
+
class MnistPipe(Pipeline):
|
9 |
+
def __init__(self,**kwargs):
|
10 |
+
|
11 |
+
# self.tokenizer = (...) # code if you want to instantiate more parameters
|
12 |
+
|
13 |
+
Pipeline.__init__(self,**kwargs) # self.model automatically instantiated here
|
14 |
+
|
15 |
+
self.transform = transforms.Compose(
|
16 |
+
[transforms.ToTensor(),
|
17 |
+
transforms.Resize((28,28), antialias=True)
|
18 |
+
])
|
19 |
+
|
20 |
+
def _sanitize_parameters(self, **kwargs):
|
21 |
+
# will make sure where each parameter goes
|
22 |
+
preprocess_kwargs = {}
|
23 |
+
postprocess_kwargs = {}
|
24 |
+
if "download" in kwargs:
|
25 |
+
preprocess_kwargs["download"] = kwargs["download"]
|
26 |
+
if "clean_output" in kwargs :
|
27 |
+
postprocess_kwargs["clean_output"] = kwargs["clean_output"]
|
28 |
+
return preprocess_kwargs, {}, postprocess_kwargs
|
29 |
+
|
30 |
+
def preprocess(self, inputs, download=False):
|
31 |
+
if download == True :
|
32 |
+
# call download_img method and name image as "image.png"
|
33 |
+
self.download_img(inputs)
|
34 |
+
inputs = "image.png"
|
35 |
+
|
36 |
+
# we open and process the image
|
37 |
+
img = Image.open(inputs)
|
38 |
+
gray = img.convert('L')
|
39 |
+
tensor = self.transform(gray)
|
40 |
+
tensor = tensor.unsqueeze(0)
|
41 |
+
return tensor
|
42 |
+
|
43 |
+
def _forward(self, tensor):
|
44 |
+
with torch.no_grad():
|
45 |
+
# the model has been automatically instantiated
|
46 |
+
# in the __init__ method
|
47 |
+
out = self.model(tensor)
|
48 |
+
return out
|
49 |
+
|
50 |
+
def postprocess(self, out, clean_output=True):
|
51 |
+
if clean_output ==True :
|
52 |
+
label = torch.argmax(out,axis=-1) # get class
|
53 |
+
label = label.tolist()[0]
|
54 |
+
return label
|
55 |
+
else :
|
56 |
+
return out
|
57 |
+
|
58 |
+
def download_img(self,url):
|
59 |
+
# if download = True download image and name it image.png
|
60 |
+
response = requests.get(url, stream=True)
|
61 |
+
|
62 |
+
with open("image.png", "wb") as f:
|
63 |
+
for chunk in response.iter_content(chunk_size=8192):
|
64 |
+
f.write(chunk)
|
65 |
+
print("image saved as image.png")
|
config.json
CHANGED
@@ -1,13 +1,24 @@
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"MnistModel"
|
4 |
],
|
5 |
"auto_map": {
|
6 |
-
"AutoConfig": "MyConfig.MnistConfig",
|
7 |
-
"AutoModelForImageClassification": "MyModel.MnistModel"
|
8 |
},
|
9 |
"conv1": 10,
|
10 |
"conv2": 20,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
"model_type": "MobileNetV1",
|
12 |
"torch_dtype": "float32",
|
13 |
"transformers_version": "4.39.0.dev0"
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "not-lain/mycustomrepo",
|
3 |
"architectures": [
|
4 |
"MnistModel"
|
5 |
],
|
6 |
"auto_map": {
|
7 |
+
"AutoConfig": "not-lain/mycustomrepo--MyConfig.MnistConfig",
|
8 |
+
"AutoModelForImageClassification": "not-lain/mycustomrepo--MyModel.MnistModel"
|
9 |
},
|
10 |
"conv1": 10,
|
11 |
"conv2": 20,
|
12 |
+
"custom_pipelines": {
|
13 |
+
"image-classification": {
|
14 |
+
"impl": "MyPipe.MnistPipe",
|
15 |
+
"pt": [
|
16 |
+
"AutoModelForImageClassification"
|
17 |
+
],
|
18 |
+
"tf": [],
|
19 |
+
"type": "image"
|
20 |
+
}
|
21 |
+
},
|
22 |
"model_type": "MobileNetV1",
|
23 |
"torch_dtype": "float32",
|
24 |
"transformers_version": "4.39.0.dev0"
|