|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Extended Mind Mpt configuration""" |
|
from typing import Optional, Union |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class ExtendedMptAttentionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`ExtendedMptAttention`] class. It is used to instantiate |
|
attention layers according to the specified arguments, defining the layers architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the MPT |
|
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b) architecture. Most of the arguments are kept for backward |
|
compatibility with previous MPT models that are hosted on the Hub (previously with `trust_remote_code=True`). |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
attn_type (`str`, *optional*, defaults to `"multihead_attention"`): |
|
type of attention to use. Options: `"multihead_attention"`, `"multiquery_attention"`. |
|
attn_pdrop (`float`, *optional*, defaults to 0.0): |
|
The dropout probability for the attention layers. |
|
attn_impl (`str`, *optional*, defaults to `"torch"`): |
|
The attention implementation to use. One of `"torch"`, `"flash"`, or `"triton"`. |
|
clip_qkv (`float`, *optional*): |
|
If not `None`, clip the queries, keys, and values in the attention layer to this value. |
|
softmax_scale (`float`, *optional*, defaults to `None`): |
|
If not `None`, scale the softmax in the attention layer by this value. If `None`, will default to |
|
`1/sqrt(hidden_size)`. |
|
prefix_lm (`bool`, *optional*, defaults to `False`)): |
|
Whether the model should operate as a Prefix LM. This requires passing an extra `prefix_mask` argument |
|
which indicates which tokens belong to the prefix. Tokens in the prefix can attend to one another |
|
bi-directionally. Tokens outside the prefix use causal attention. |
|
qk_ln (`bool`, *optional*, defaults to `False`): |
|
Whether to apply layer normalization to the queries and keys in the attention layer. |
|
attn_uses_sequence_id (`bool`, *optional*, defaults to `False`)): |
|
Whether to restrict attention to tokens that have the same token_type_ids. When the model is in `train` |
|
mode, this requires passing an extra *token_type_ids* argument which indicates which sub-sequence each |
|
token belongs to. Defaults to `False` meaning any provided *token_type_ids* will be ignored. |
|
alibi (`bool`, *optional*, defaults to `True`): |
|
Whether or not to use the alibi bias instead of positional embedding. |
|
alibi_bias_max (`int`, *optional*, defaults to 8): |
|
The maximum value of the alibi bias. |
|
|
|
#### Memory Configuration #### |
|
topk (`int`, *optional*, defaults to `10`): |
|
Number of external memories for each query token to retrieve and attend to. |
|
memory_type (`string`, *optional*, defaults to `manual`): |
|
Whether to store external memories manually or in a vector database. |
|
memory_device (`string`, *optional*, defaults to `cpu`): |
|
Specify device to store memory. |
|
mask_by_sim (`bool`, *optional*, defaults to `True`): |
|
Whether or not to mask retrieved memories by similarity. |
|
sim_threshold (`float`, *optional*, defaults to `0.25`): |
|
Threshold for masking retrieved memories. |
|
tokenizer_all_special_ids (`list`, *optional*, defaults to `[0, 50278]`): |
|
Ids for special tokens to remove from memories. |
|
remove_special_tokens (`bool`, *optional*, defaults to `True`): |
|
Remove memories that correspond to tokenizer special ids. |
|
#### Memory Configuration #### |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
attn_type="multihead_attention", |
|
attn_pdrop=0, |
|
attn_impl="torch", |
|
clip_qkv=None, |
|
softmax_scale=None, |
|
prefix_lm=False, |
|
qk_ln=False, |
|
attn_uses_sequence_id=False, |
|
alibi=True, |
|
alibi_bias_max=8, |
|
topk=10, |
|
memory_type="manual", |
|
memory_device="cpu", |
|
mask_by_sim=True, |
|
sim_threshold=0.25, |
|
tokenizer_all_special_ids=[0, 50278], |
|
remove_special_ids=False, |
|
use_external_mind_by_layer: list[bool] = [True for _ in range(32)], |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.attn_type = attn_type |
|
self.attn_pdrop = attn_pdrop |
|
self.attn_impl = attn_impl |
|
self.clip_qkv = clip_qkv |
|
self.softmax_scale = softmax_scale |
|
self.prefix_lm = prefix_lm |
|
self.attn_uses_sequence_id = attn_uses_sequence_id |
|
self.alibi = alibi |
|
self.qk_ln = qk_ln |
|
self.alibi_bias_max = alibi_bias_max |
|
self.topk = topk |
|
self.memory_type = memory_type |
|
self.memory_device = memory_device |
|
self.mask_by_sim = mask_by_sim |
|
self.sim_threshold = sim_threshold |
|
self.tokenizer_all_special_ids = tokenizer_all_special_ids |
|
self.remove_special_ids = remove_special_ids |
|
self.use_external_mind_by_layer = use_external_mind_by_layer |
|
|
|
if attn_type not in ["multihead_attention", "multiquery_attention"]: |
|
raise ValueError( |
|
f"`attn_type` has to be either `multihead_attention` or `multiquery_attention`. Received: {attn_type}" |
|
) |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, pretrained_model_name_or_path, **kwargs |
|
) -> "PretrainedConfig": |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict( |
|
pretrained_model_name_or_path, **kwargs |
|
) |
|
|
|
if config_dict.get("model_type") == "mpt": |
|
config_dict = config_dict["attn_config"] |
|
|
|
if ( |
|
"model_type" in config_dict |
|
and hasattr(cls, "model_type") |
|
and config_dict["model_type"] != cls.model_type |
|
): |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class ExtendedMptConfig(PretrainedConfig): |
|
""" |
|
This is the configuration class to store the configuration of a [`MptModel`]. It is used to instantiate a Mpt model |
|
according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to the Mpt-7b architecture |
|
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b). |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
d_model (`int`, *optional*, defaults to 2048): |
|
Dimensionality of the embeddings and hidden states. |
|
n_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
n_layers (`int`, *optional*, defaults to 24): |
|
Number of hidden layers in the Transformer encoder. |
|
expansion_ratio (`int`, *optional*, defaults to 4): |
|
The ratio of the up/down scale in the MLP. |
|
max_seq_len (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length of the model. |
|
vocab_size (`int`, *optional*, defaults to 50368): |
|
Vocabulary size of the Mpt model. Defines the maximum number of different tokens that can be represented by |
|
the `inputs_ids` passed when calling [`MptModel`]. Check [this |
|
discussion](https://huggingface.co/bigscience/mpt/discussions/120#633d28389addb8530b406c2a) on how the |
|
`vocab_size` has been defined. |
|
resid_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout probability applied to the attention output before combining with residual. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): |
|
The epsilon to use in the layer normalization layers. |
|
emb_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for the embedding layer. |
|
learned_pos_emb (`bool`, *optional*, defaults to `False`): |
|
Whether to use learned positional embeddings. |
|
attn_config (`dict`, *optional*): |
|
A dictionary used to configure the model's attention module. |
|
init_device (`str`, *optional*): |
|
The device to use for parameter initialization. Defined for backward compatibility |
|
logit_scale (`float`, *optional*): |
|
If not None, scale the logits by this value. |
|
no_bias (`bool`, *optional*, defaults to `True`): |
|
Whether to use bias in all linear layers. |
|
verbose (`int`, *optional*, defaults to 0): |
|
The verbosity level to use for logging. Used in the previous versions of MPT models for logging. This |
|
argument is deprecated. |
|
embedding_fraction (`float`, *optional*, defaults to 1.0): |
|
The fraction to scale the gradients of the embedding layer by. |
|
norm_type (`str`, *optional*, defaults to `"low_precision_layernorm"`): |
|
Type of layer norm to use. All MPT models uses the same layer norm implementation. Defined for backward |
|
compatibility. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
|
|
#### Memory Configuration #### |
|
use_external_mind (`bool`, *optional*, defaults to `True`): |
|
Whether to attend to external memories. |
|
use_external_mind_by_layer (`List[bool]`, *optional*, defaults to List[`True`, ..., `True`]): |
|
Whether to attend to external memories, on each decoder layer. |
|
#### Memory Configuration #### |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import MptConfig, MptModel |
|
|
|
>>> # Initializing a Mpt configuration |
|
>>> configuration = MptConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the configuration |
|
>>> model = MptModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
``` |
|
""" |
|
|
|
model_type = "extended-mpt" |
|
attribute_map = { |
|
"num_attention_heads": "n_heads", |
|
"hidden_size": "d_model", |
|
"num_hidden_layers": "n_layers", |
|
} |
|
|
|
def __init__( |
|
self, |
|
d_model: int = 4096, |
|
n_heads: int = 32, |
|
n_layers: int = 32, |
|
expansion_ratio: int = 4, |
|
max_seq_len_inference: int = 2048, |
|
vocab_size: int = 50432, |
|
resid_pdrop: float = 0.0, |
|
layer_norm_epsilon: float = 1e-5, |
|
emb_pdrop: float = 0.0, |
|
learned_pos_emb: bool = True, |
|
attn_config: ExtendedMptAttentionConfig = None, |
|
init_device: str = "cpu", |
|
logit_scale: Optional[Union[float, str]] = None, |
|
no_bias: bool = True, |
|
verbose: int = 0, |
|
embedding_fraction: float = 1.0, |
|
norm_type: str = "low_precision_layernorm", |
|
use_cache: bool = False, |
|
initializer_range=0.02, |
|
use_external_mind: bool = True, |
|
**kwargs, |
|
): |
|
if attn_config is None: |
|
self.attn_config = ExtendedMptAttentionConfig( |
|
use_external_mind_by_layer=[True for _ in range(n_layers)] |
|
) |
|
elif not isinstance(attn_config, ExtendedMptAttentionConfig): |
|
self.attn_config = ExtendedMptAttentionConfig(**attn_config) |
|
else: |
|
self.attn_config = attn_config |
|
self.d_model = d_model |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.expansion_ratio = expansion_ratio |
|
self.max_seq_len = max_seq_len_inference |
|
self.vocab_size = vocab_size |
|
self.resid_pdrop = resid_pdrop |
|
self.emb_pdrop = emb_pdrop |
|
self.learned_pos_emb = learned_pos_emb |
|
self.init_device = init_device |
|
self.logit_scale = logit_scale |
|
self.no_bias = no_bias |
|
self.verbose = verbose |
|
self.embedding_fraction = embedding_fraction |
|
self.norm_type = norm_type |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.use_cache = use_cache |
|
self.initializer_range = initializer_range |
|
self.use_external_mind = use_external_mind |
|
super().__init__(**kwargs) |
|
|