extended-mind-mpt-7b-chat / configuration.py
phoebeklett's picture
Update configuration.py
6068b36 verified
raw
history blame
13.8 kB
# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This code has been adapted from Mosaic ML and Huggingface and inherits the above lisence.
# The original code can be found here:
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mpt/configuration_mpt.py
"""Extended Mind Mpt configuration"""
from typing import Optional, Union
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class ExtendedMptAttentionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ExtendedMptAttention`] class. It is used to instantiate
attention layers according to the specified arguments, defining the layers architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MPT
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b) architecture. Most of the arguments are kept for backward
compatibility with previous MPT models that are hosted on the Hub (previously with `trust_remote_code=True`).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
attn_type (`str`, *optional*, defaults to `"multihead_attention"`):
type of attention to use. Options: `"multihead_attention"`, `"multiquery_attention"`.
attn_pdrop (`float`, *optional*, defaults to 0.0):
The dropout probability for the attention layers.
attn_impl (`str`, *optional*, defaults to `"torch"`):
The attention implementation to use. One of `"torch"`, `"flash"`, or `"triton"`.
clip_qkv (`float`, *optional*):
If not `None`, clip the queries, keys, and values in the attention layer to this value.
softmax_scale (`float`, *optional*, defaults to `None`):
If not `None`, scale the softmax in the attention layer by this value. If `None`, will default to
`1/sqrt(hidden_size)`.
prefix_lm (`bool`, *optional*, defaults to `False`)):
Whether the model should operate as a Prefix LM. This requires passing an extra `prefix_mask` argument
which indicates which tokens belong to the prefix. Tokens in the prefix can attend to one another
bi-directionally. Tokens outside the prefix use causal attention.
qk_ln (`bool`, *optional*, defaults to `False`):
Whether to apply layer normalization to the queries and keys in the attention layer.
attn_uses_sequence_id (`bool`, *optional*, defaults to `False`)):
Whether to restrict attention to tokens that have the same token_type_ids. When the model is in `train`
mode, this requires passing an extra *token_type_ids* argument which indicates which sub-sequence each
token belongs to. Defaults to `False` meaning any provided *token_type_ids* will be ignored.
alibi (`bool`, *optional*, defaults to `True`):
Whether or not to use the alibi bias instead of positional embedding.
alibi_bias_max (`int`, *optional*, defaults to 8):
The maximum value of the alibi bias.
#### Memory Configuration ####
topk (`int`, *optional*, defaults to `10`):
Number of external memories for each query token to retrieve and attend to.
memory_type (`string`, *optional*, defaults to `manual`):
Whether to store external memories manually or in a vector database.
memory_device (`string`, *optional*, defaults to `cpu`):
Specify device to store memory.
mask_by_sim (`bool`, *optional*, defaults to `True`):
Whether or not to mask retrieved memories by similarity.
sim_threshold (`float`, *optional*, defaults to `0.25`):
Threshold for masking retrieved memories.
tokenizer_all_special_ids (`list`, *optional*, defaults to `[0, 50278]`):
Ids for special tokens to remove from memories.
remove_special_tokens (`bool`, *optional*, defaults to `True`):
Remove memories that correspond to tokenizer special ids.
#### Memory Configuration ####
"""
def __init__(
self,
attn_type="multihead_attention",
attn_pdrop=0,
attn_impl="torch",
clip_qkv=None,
softmax_scale=None,
prefix_lm=False,
qk_ln=False,
attn_uses_sequence_id=False,
alibi=True,
alibi_bias_max=8,
topk=10,
memory_type="manual",
memory_device="cpu",
mask_by_sim=True,
sim_threshold=0.25,
tokenizer_all_special_ids=[0, 50278],
remove_special_ids=False,
use_external_mind_by_layer: list[bool] = [True for _ in range(32)],
**kwargs,
):
super().__init__(**kwargs)
self.attn_type = attn_type
self.attn_pdrop = attn_pdrop
self.attn_impl = attn_impl
self.clip_qkv = clip_qkv
self.softmax_scale = softmax_scale
self.prefix_lm = prefix_lm
self.attn_uses_sequence_id = attn_uses_sequence_id
self.alibi = alibi
self.qk_ln = qk_ln
self.alibi_bias_max = alibi_bias_max
self.topk = topk
self.memory_type = memory_type
self.memory_device = memory_device
self.mask_by_sim = mask_by_sim
self.sim_threshold = sim_threshold
self.tokenizer_all_special_ids = tokenizer_all_special_ids
self.remove_special_ids = remove_special_ids
self.use_external_mind_by_layer = use_external_mind_by_layer
if attn_type not in ["multihead_attention", "multiquery_attention"]:
raise ValueError(
f"`attn_type` has to be either `multihead_attention` or `multiquery_attention`. Received: {attn_type}"
)
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path, **kwargs
) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(
pretrained_model_name_or_path, **kwargs
)
if config_dict.get("model_type") == "mpt":
config_dict = config_dict["attn_config"]
if (
"model_type" in config_dict
and hasattr(cls, "model_type")
and config_dict["model_type"] != cls.model_type
):
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class ExtendedMptConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`MptModel`]. It is used to instantiate a Mpt model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to the Mpt-7b architecture
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
d_model (`int`, *optional*, defaults to 2048):
Dimensionality of the embeddings and hidden states.
n_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
n_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
expansion_ratio (`int`, *optional*, defaults to 4):
The ratio of the up/down scale in the MLP.
max_seq_len (`int`, *optional*, defaults to 2048):
The maximum sequence length of the model.
vocab_size (`int`, *optional*, defaults to 50368):
Vocabulary size of the Mpt model. Defines the maximum number of different tokens that can be represented by
the `inputs_ids` passed when calling [`MptModel`]. Check [this
discussion](https://huggingface.co/bigscience/mpt/discussions/120#633d28389addb8530b406c2a) on how the
`vocab_size` has been defined.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability applied to the attention output before combining with residual.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
emb_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for the embedding layer.
learned_pos_emb (`bool`, *optional*, defaults to `False`):
Whether to use learned positional embeddings.
attn_config (`dict`, *optional*):
A dictionary used to configure the model's attention module.
init_device (`str`, *optional*):
The device to use for parameter initialization. Defined for backward compatibility
logit_scale (`float`, *optional*):
If not None, scale the logits by this value.
no_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in all linear layers.
verbose (`int`, *optional*, defaults to 0):
The verbosity level to use for logging. Used in the previous versions of MPT models for logging. This
argument is deprecated.
embedding_fraction (`float`, *optional*, defaults to 1.0):
The fraction to scale the gradients of the embedding layer by.
norm_type (`str`, *optional*, defaults to `"low_precision_layernorm"`):
Type of layer norm to use. All MPT models uses the same layer norm implementation. Defined for backward
compatibility.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
#### Memory Configuration ####
use_external_mind (`bool`, *optional*, defaults to `True`):
Whether to attend to external memories.
use_external_mind_by_layer (`List[bool]`, *optional*, defaults to List[`True`, ..., `True`]):
Whether to attend to external memories, on each decoder layer.
#### Memory Configuration ####
Example:
```python
>>> from transformers import MptConfig, MptModel
>>> # Initializing a Mpt configuration
>>> configuration = MptConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = MptModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "extended-mpt"
attribute_map = {
"num_attention_heads": "n_heads",
"hidden_size": "d_model",
"num_hidden_layers": "n_layers",
}
def __init__(
self,
d_model: int = 4096,
n_heads: int = 32,
n_layers: int = 32,
expansion_ratio: int = 4,
max_seq_len_inference: int = 2048,
vocab_size: int = 50432,
resid_pdrop: float = 0.0,
layer_norm_epsilon: float = 1e-5,
emb_pdrop: float = 0.0,
learned_pos_emb: bool = True,
attn_config: ExtendedMptAttentionConfig = None,
init_device: str = "cpu",
logit_scale: Optional[Union[float, str]] = None,
no_bias: bool = True,
verbose: int = 0,
embedding_fraction: float = 1.0,
norm_type: str = "low_precision_layernorm",
use_cache: bool = False,
initializer_range=0.02,
use_external_mind: bool = True,
**kwargs,
):
if attn_config is None:
self.attn_config = ExtendedMptAttentionConfig(
use_external_mind_by_layer=[True for _ in range(n_layers)]
)
elif not isinstance(attn_config, ExtendedMptAttentionConfig):
self.attn_config = ExtendedMptAttentionConfig(**attn_config)
else:
self.attn_config = attn_config
self.d_model = d_model
self.n_heads = n_heads
self.n_layers = n_layers
self.expansion_ratio = expansion_ratio
self.max_seq_len = max_seq_len_inference
self.vocab_size = vocab_size
self.resid_pdrop = resid_pdrop
self.emb_pdrop = emb_pdrop
self.learned_pos_emb = learned_pos_emb
self.init_device = init_device
self.logit_scale = logit_scale
self.no_bias = no_bias
self.verbose = verbose
self.embedding_fraction = embedding_fraction
self.norm_type = norm_type
self.layer_norm_epsilon = layer_norm_epsilon
self.use_cache = use_cache
self.initializer_range = initializer_range
self.use_external_mind = use_external_mind
super().__init__(**kwargs)