|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Extended Mind LLaMA model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class ExtendedLlamaConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`ExtendedLlamaModel`]. |
|
It is used to instantiate an Extended Mind LLaMA model according to the specified arguments, |
|
defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the Extended Mind LLaMA-7B. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] |
|
and can be used to control the model outputs. |
|
Read the documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the LLaMA model. Defines the number of different tokens |
|
that can be represented by the `inputs_ids` passed when calling [`LlamaModel`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 11008): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_key_value_heads (`int`, *optional*): |
|
This is the number of key_value heads that should be used to implement |
|
Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, |
|
the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 |
|
the model will use Multi Query Attention (MQA) otherwise GQA is used. |
|
When converting a multi-head checkpoint to a GQA checkpoint, |
|
each group key and value head should be constructed by meanpooling |
|
all the original heads within that group. For more details checkout |
|
[this paper](https://arxiv.org/pdf/2305.13245.pdf). |
|
If it is not specified, will default to |
|
`num_attention_heads`. |
|
pretraining_tp (`int`, *optional*, defaults to `1`): |
|
Experimental feature. Tensor parallelism rank used during pretraining. |
|
Please refer to [this document] |
|
(https://huggingface.co/docs/transformers/parallelism) |
|
to understand more about it. This value is |
|
necessary to ensure exact reproducibility of the pretraining results. |
|
Please refer to [this issue] |
|
(https://github.com/pytorch/pytorch/issues/76232). |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. |
|
Llama 1 supports up to 2048 tokens, |
|
Llama 2 up to 4096, CodeLlama up to 16384. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer |
|
for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions |
|
(not used by all models). Only relevant if `config.is_decoder=True`. |
|
tie_word_embeddings(`bool`, *optional*, defaults to `False`): |
|
Whether to tie weight embeddings |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`Dict`, *optional*): |
|
Dictionary containing the scaling configuration for the RoPE embeddings. |
|
Currently supports two scaling strategies: linear and dynamic. |
|
Their scaling factor must be an float greater than 1. The expected format |
|
is `{"type": strategy name, "factor": scaling factor}`. |
|
When using this flag, don't update `max_position_embeddings` |
|
to the expected new maximum. See the following thread for more information |
|
on how these scaling strategies behave: |
|
https://www.reddit.com/r/LocalLLaMA/comments/ |
|
14mrgpr/dynamically_scaled_rope_further_increases/. |
|
This is an experimental feature, subject to breaking API changes in future versions. |
|
|
|
#### Memory Configuration #### |
|
use_external_mind (`bool`, *optional*, defaults to `True`): |
|
Whether to attend to external memories. |
|
use_external_mind_by_layer (`List[bool]`, *optional*, |
|
defaults to List[`True`, ..., `True`]): |
|
Whether to attend to external memories, on each decoder layer. |
|
topk (`int`, *optional*, defaults to `10`): |
|
Number of external memories for each query token to retrieve and attend to. |
|
memory_type (`string`, *optional*, defaults to `manual`): |
|
Whether to store external memories manually or in a vector database. |
|
memory_device (`string`, *optional*, defaults to `cpu`): |
|
Specify device to store memory. |
|
mask_by_sim (`bool`, *optional*, defaults to `True`): |
|
Whether or not to mask retrieved memories by similarity. |
|
sim_threshold (`float`, *optional*, defaults to `0.25`): |
|
Threshold for masking retrieved memories. |
|
tokenizer_all_special_ids (`list`, *optional*, defaults to `[0,1,2]`): |
|
Ids for special tokens to remove from memories. |
|
remove_special_tokens (`bool`, *optional*, defaults to `True`): |
|
Remove memories that correspond to tokenizer special ids. |
|
#### Memory Configuration #### |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import LlamaModel, LlamaConfig |
|
|
|
>>> # Initializing a LLaMA llama-7b style configuration |
|
>>> configuration = LlamaConfig() |
|
|
|
>>> # Initializing a model from the llama-7b style configuration |
|
>>> model = LlamaModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "extended-llama" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=4096, |
|
intermediate_size=11008, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=None, |
|
hidden_act="silu", |
|
max_position_embeddings=2048, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-5, |
|
use_cache=True, |
|
pad_token_id=None, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
pretraining_tp=1, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
memory_config=None, |
|
**kwargs, |
|
): |
|
if memory_config is None: |
|
memory_config = { |
|
"mask_by_sim": False, |
|
"sim_threshold": 0.25, |
|
"topk": 10, |
|
"use_external_mind": True, |
|
"memory_type": "manual", |
|
"memory_device": "cpu", |
|
"tokenizer_all_special_ids": [0, bos_token_id, eos_token_id], |
|
"use_external_mind_by_layer": [ |
|
True for _ in range(num_hidden_layers) |
|
], |
|
"remove_special_ids": True, |
|
} |
|
for key, value in memory_config.items(): |
|
setattr(self, key, value) |
|
|
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.pretraining_tp = pretraining_tp |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self._rope_scaling_validation() |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
def _rope_scaling_validation(self): |
|
""" |
|
Validate the `rope_scaling` configuration. |
|
""" |
|
if self.rope_scaling is None: |
|
return |
|
|
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: |
|
raise ValueError( |
|
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " |
|
f"got {self.rope_scaling}" |
|
) |
|
rope_scaling_type = self.rope_scaling.get("type", None) |
|
rope_scaling_factor = self.rope_scaling.get("factor", None) |
|
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: |
|
raise ValueError( |
|
f"""`rope_scaling`'s type field must be one of ['linear', 'dynamic'], |
|
got {rope_scaling_type}""" |
|
) |
|
if ( |
|
rope_scaling_factor is None |
|
or not isinstance(rope_scaling_factor, float) |
|
or rope_scaling_factor <= 1.0 |
|
): |
|
raise ValueError( |
|
f"""`rope_scaling`'s factor field must be an float > 1, |
|
got {rope_scaling_factor}""" |
|
) |
|
|
|
|
|
if self.memory_type=='faiss' and self.num_key_value_heads != self.num_attention_heads: |
|
raise NotImplementedError( |
|
'Faiss memory not compatible with Grouped Query Attention.' |
|
) |
|
|
|
|