Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- nomic-ai/gpt4all-j-prompt-generations
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
---
|
9 |
+
|
10 |
+
# Model Card for GPT4All-J
|
11 |
+
|
12 |
+
An Apache-2 licensed chatbot trained over a massive curated corpus of assistant interactions including word problems, multi-turn dialogue, code, poems, songs, and stories.
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
### Model Description
|
17 |
+
|
18 |
+
<!-- Provide a longer summary of what this model is. -->
|
19 |
+
|
20 |
+
This model has been finetuned from [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B)
|
21 |
+
|
22 |
+
- **Developed by:** [Nomic AI](https://home.nomic.ai)
|
23 |
+
- **Model Type:** A finetuned GPT-J model on assistant style interaction data
|
24 |
+
- **Language(s) (NLP):** English
|
25 |
+
- **License:** Apache-2
|
26 |
+
- **Finetuned from model [optional]:** [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B)
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [https://github.com/nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all)
|
33 |
+
- **Base Model Repository:** [https://github.com/kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax)
|
34 |
+
- **Paper [optional]:** [GPT4All-J: An Apache-2 Licensed Assistant-Style Chatbot](https://s3.amazonaws.com/static.nomic.ai/gpt4all/2023_GPT4All-J_Technical_Report_2.pdf)
|
35 |
+
- **Demo [optional]:** [https://gpt4all.io/](https://gpt4all.io/)
|
36 |
+
|
37 |
+
|
38 |
+
### Training Procedure
|
39 |
+
GPT4All is made possible by our compute partner [Paperspace](https://www.paperspace.com/).
|
40 |
+
|
41 |
+
Trained on a DGX cluster with 8 A100 80GB GPUs for ~12 hours. Using Deepspeed + Accelerate, we use a global batch size of 256 with a learning rate of 2e-5. More information can be found in the repo.
|
42 |
+
|
43 |
+
|
44 |
+
### Results
|
45 |
+
|
46 |
+
Results on common sense reasoning benchmarks
|
47 |
+
|
48 |
+
```
|
49 |
+
Model BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA
|
50 |
+
----------------------- ---------- ---------- ----------- ------------ ---------- ---------- ----------
|
51 |
+
GPT4All-J 6.7B 73.4 74.8 63.4 64.7 54.9 36.0 40.2
|
52 |
+
GPT4All-J Lora 6.7B 68.6 75.8 66.2 63.5 56.4 35.7 40.2
|
53 |
+
GPT4All LLaMa Lora 7B 73.1 77.6 72.1 67.8 51.1 40.4 40.2
|
54 |
+
Dolly 6B 68.8 77.3 67.6 63.9 62.9 38.7 41.2
|
55 |
+
Dolly 12B 56.7 75.4 71.0 62.2 *64.6* 38.5 40.4
|
56 |
+
Alpaca 7B 73.9 77.2 73.9 66.1 59.8 43.3 43.4
|
57 |
+
Alpaca Lora 7B *74.3* *79.3* *74.0* *68.8* 56.6 *43.9* *42.6*
|
58 |
+
GPT-J 6.7B 65.4 76.2 66.2 64.1 62.2 36.6 38.2
|
59 |
+
LLaMa 7B 73.1 77.4 73.0 66.9 52.5 41.4 42.4
|
60 |
+
Pythia 6.7B 63.5 76.3 64.0 61.1 61.3 35.2 37.2
|
61 |
+
Pythia 12B 67.7 76.6 67.3 63.8 63.9 34.8 38
|
62 |
+
```
|