whisper-tiny / README.md
nomad-ai's picture
End of training
d79d01f
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-US
          split: train[450:]
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.22434915773353753

whisper-tiny

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5913
  • Wer Ortho: 0.2340
  • Wer: 0.2243

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
1.7357 2.0 50 0.7179 0.2947 0.2412
0.2772 4.0 100 0.4758 0.2404 0.2113
0.081 6.0 150 0.5069 0.2628 0.2282
0.02 8.0 200 0.5289 0.2564 0.2297
0.0044 10.0 250 0.5366 0.2452 0.2251
0.0018 12.0 300 0.5565 0.2404 0.2251
0.0011 14.0 350 0.5668 0.2388 0.2259
0.0009 16.0 400 0.5762 0.2364 0.2251
0.0007 18.0 450 0.5847 0.2348 0.2243
0.0006 20.0 500 0.5913 0.2340 0.2243

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3