noflm
update model card README.md
e9e6b57
|
raw
history blame
1.89 kB
metadata
language:
  - ja
license: other
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - Elite35P-Server/EliteVoiceProject
metrics:
  - wer
model-index:
  - name: Whisper Base Japanese Elite
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Elite35P-Server/EliteVoiceProject twitter
          type: Elite35P-Server/EliteVoiceProject
          config: twitter
          split: test
          args: twitter
        metrics:
          - name: Wer
            type: wer
            value: 11.585365853658537

Whisper Base Japanese Elite

This model is a fine-tuned version of openai/whisper-base on the Elite35P-Server/EliteVoiceProject twitter dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1459
  • Wer: 11.5854

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0009 29.01 1000 0.1459 11.5854

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.8.1.dev0
  • Tokenizers 0.13.2