KoBART_with_LED / load_model.py
noahkim's picture
Load Model file
5780d70
import logging
import os
import math
import pandas as pd
import numpy as np
import argparse
import json
import gc
import re
import copy
import random
from tqdm import tqdm
from typing import Dict, List, Optional, Tuple
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from transformers import PreTrainedTokenizerFast, LEDForConditionalGeneration, AutoModel
from transformers import BartForConditionalGeneration, BartConfig
from transformers.models.bart.modeling_bart import BartLearnedPositionalEmbedding
from transformers.models.longformer.modeling_longformer import LongformerSelfAttention
from transformers import get_linear_schedule_with_warmup, AdamW, TrainingArguments
import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn import CrossEntropyLoss, MSELoss
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset
# Kobart์˜ attention layer๋ฅผ ๋Œ€์ฒด
class LongformerSelfAttentionForBart(nn.Module):
def __init__(self, config : dict , layer_id : int):
super().__init__()
self.embed_dim = config.d_model
self.longformer_self_attn = LongformerSelfAttention(config, layer_id=layer_id)
self.output = nn.Linear(self.embed_dim, self.embed_dim)
# kobart์˜ ๊ธฐ์กด layer์™€ ๋™์ผํ•œ ํ˜•ํƒœ์˜ ์ž…๋ ฅ์„ ๋ฐ›๊ณ , ๋™์ผํ•œ ํ˜•ํƒœ์˜ ์ถœ๋ ฅ์„ ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ด์ค˜์•ผํ•จ.
def forward(self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = hidden_states.size()
# bs x seq_len x seq_len -> bs x seq_len ์œผ๋กœ ๋ณ€๊ฒฝ
attention_mask = attention_mask.squeeze(dim=1)
attention_mask = attention_mask[:,0]
is_index_masked = attention_mask < 0
is_index_global_attn = attention_mask > 0
is_global_attn = is_index_global_attn.flatten().any().item()
outputs = self.longformer_self_attn(
hidden_states,
attention_mask=attention_mask,
layer_head_mask=None,
is_index_masked=is_index_masked,
is_index_global_attn=is_index_global_attn,
is_global_attn=is_global_attn,
output_attentions=output_attentions,
)
attn_output = self.output(outputs[0])
return (attn_output,) + outputs[1:] if len(outputs) == 2 else (attn_output, None, None)
class LongformerBartForConditionalGeneration(BartForConditionalGeneration):
def __init__(self, config):
super().__init__(config)
if config.attention_mode == 'n2':
pass # do nothing, use BertSelfAttention instead
else:
self.model.encoder.embed_positions = BartLearnedPositionalEmbedding(
config.max_encoder_position_embeddings,
config.d_model,
config.pad_token_id)
self.model.decoder.embed_positions = BartLearnedPositionalEmbedding(
config.max_decoder_position_embeddings,
config.d_model,
config.pad_token_id)
for i, layer in enumerate(self.model.encoder.layers):
layer.self_attn = LongformerSelfAttentionForBart(config, layer_id=i)
#longformer bart๋ชจ๋ธ์˜ config ์ƒ์„ฑ class
class LongformerBartConfig(BartConfig):
def __init__(self, attention_window: List[int] = [512], attention_dilation: List[int] = [1],
autoregressive: bool = False, attention_mode: str = 'sliding_chunks',
gradient_checkpointing: bool = False, max_seq_len: int = 4096, max_pos: int = 4104, **kwargs):
"""
Args:
attention_window: list of attention window sizes of length = number of layers.
window size = number of attention locations on each side.
For an affective window size of 512, use `attention_window=[256]*num_layers`
which is 256 on each side.
attention_dilation: list of attention dilation of length = number of layers.
attention dilation of `1` means no dilation.
autoregressive: do autoregressive attention or have attention of both sides
attention_mode: 'n2' for regular n^2 self-attention, 'tvm' for TVM implemenation of Longformer
selfattention, 'sliding_chunks' for another implementation of Longformer selfattention
"""
super().__init__(**kwargs)
self.attention_window = attention_window
self.attention_dilation = attention_dilation
self.autoregressive = autoregressive
self.attention_mode = attention_mode
self.gradient_checkpointing = gradient_checkpointing
assert self.attention_mode in ['tvm', 'sliding_chunks', 'n2']
if __name__ == '__main__':
# Longformer weight ๋งŒ๋“œ๋Š” ์ฝ”๋“œ
max_pos = 4104
max_seq_len = 4096
attention_window = 512
save_path = '../LED_KoBART/model'
# ๊ธฐ์กด pretrained ๋œ kobart tokenizer & model load
tokenizer = PreTrainedTokenizerFast.from_pretrained('ainize/kobart-news', model_max_length=max_pos)
kobart_longformer = BartForConditionalGeneration.from_pretrained('ainize/kobart-news')
config = LongformerBartConfig.from_pretrained('ainize/kobart-news')
kobart_longformer.config = config
config.attention_probs_dropout_prob = config.attention_dropout
config.architectures = ['LongformerEncoderDecoderForConditionalGeneration', ]
# Tokenizer์˜ max_positional_embedding_size ํ™•์žฅ
# extend position embeddings
tokenizer.model_max_length = max_pos
tokenizer.init_kwargs['model_max_length'] = max_pos
current_max_pos, embed_size = kobart_longformer.model.encoder.embed_positions.weight.shape
assert current_max_pos == config.max_position_embeddings + 2
config.max_encoder_position_embeddings = max_pos
config.max_decoder_position_embeddings = config.max_position_embeddings
del config.max_position_embeddings
max_pos += 2 # NOTE: BART has positions 0,1 reserved, so embedding size is max position + 2
assert max_pos >= current_max_pos
new_encoder_pos_embed = kobart_longformer.model.encoder.embed_positions.weight.new_empty(max_pos, embed_size)
# Positional Embedding ํ™•์žฅ
k = 2
step = 1028 - 2
while k < max_pos - 1:
new_encoder_pos_embed[k:(k + step)] = kobart_longformer.model.encoder.embed_positions.weight[2:]
k += step
kobart_longformer.model.encoder.embed_positions.weight.data = new_encoder_pos_embed
config.attention_window = [attention_window] * config.num_hidden_layers
config.attention_dilation = [1] * config.num_hidden_layers
# Kobart Self attention > Longformer Self Attention
for i, layer in enumerate(kobart_longformer.model.encoder.layers):
longformer_self_attn_for_bart = LongformerSelfAttentionForBart(kobart_longformer.config, layer_id=i)
longformer_self_attn_for_bart.longformer_self_attn.query = layer.self_attn.q_proj
longformer_self_attn_for_bart.longformer_self_attn.key = layer.self_attn.k_proj
longformer_self_attn_for_bart.longformer_self_attn.value = layer.self_attn.v_proj
longformer_self_attn_for_bart.longformer_self_attn.query_global = copy.deepcopy(layer.self_attn.q_proj)
longformer_self_attn_for_bart.longformer_self_attn.key_global = copy.deepcopy(layer.self_attn.k_proj)
longformer_self_attn_for_bart.longformer_self_attn.value_global = copy.deepcopy(layer.self_attn.v_proj)
longformer_self_attn_for_bart.output = layer.self_attn.out_proj
layer.self_attn = longformer_self_attn_for_bart
kobart_longformer.save_pretrained(save_path)
tokenizer.save_pretrained(save_path, None)