Upload 2 files
Browse files- README(2).md +153 -0
- img.png +0 -0
README(2).md
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: peft
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
tags:
|
7 |
+
- medical
|
8 |
+
license: cc-by-nc-3.0
|
9 |
+
---
|
10 |
+
|
11 |
+
# MedFalcon v2.1a 40b LoRA - Step 4500
|
12 |
+
|
13 |
+
![img.png](img.png)
|
14 |
+
|
15 |
+
## Model Description
|
16 |
+
|
17 |
+
This a model check point release at 4500 steps. For evaluation use only! Limitations:
|
18 |
+
* LoRA output will be more concise than the base model
|
19 |
+
* Due to the size, base knowledge may be overwritten from falcon-40b
|
20 |
+
* Due to the size, more hardware may be required to load falcon-40b when using this LoRA
|
21 |
+
|
22 |
+
### Architecture
|
23 |
+
`nmitchko/medfalconv2-1a-40b-lora'` is a large language model LoRa specifically fine-tuned for medical domain tasks.
|
24 |
+
It is based on [`Falcon-40b`](https://huggingface.co/tiiuae/falcon-40b) at 40 billion parameters.
|
25 |
+
|
26 |
+
The primary goal of this model is to improve question-answering and medical dialogue tasks.
|
27 |
+
It was trained using [LoRA](https://arxiv.org/abs/2106.09685), specifically [QLora](https://github.com/artidoro/qlora), to reduce memory footprint.
|
28 |
+
|
29 |
+
See Training Parameters for more info This Lora supports 4-bit and 8-bit modes.
|
30 |
+
|
31 |
+
### Requirements
|
32 |
+
|
33 |
+
```
|
34 |
+
bitsandbytes>=0.39.0
|
35 |
+
peft
|
36 |
+
transformers
|
37 |
+
```
|
38 |
+
|
39 |
+
Steps to load this model:
|
40 |
+
1. Load base model using transformers
|
41 |
+
2. Apply LoRA using peft
|
42 |
+
|
43 |
+
```python
|
44 |
+
#
|
45 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
46 |
+
import transformers
|
47 |
+
import torch
|
48 |
+
from peft import PeftModel
|
49 |
+
|
50 |
+
model = "tiiuae/falcon-40b"
|
51 |
+
LoRA = "nmitchko/medfalconv2-1a-40b-lora"
|
52 |
+
|
53 |
+
# If you want 8 or 4 bit set the appropriate flags
|
54 |
+
load_8bit = True
|
55 |
+
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
57 |
+
|
58 |
+
model = AutoModelForCausalLM.from_pretrained(model,
|
59 |
+
load_in_8bit=load_8bit,
|
60 |
+
torch_dtype=torch.float16,
|
61 |
+
trust_remote_code=True,
|
62 |
+
)
|
63 |
+
|
64 |
+
model = PeftModel.from_pretrained(model, LoRA)
|
65 |
+
|
66 |
+
pipeline = transformers.pipeline(
|
67 |
+
"text-generation",
|
68 |
+
model=model,
|
69 |
+
tokenizer=tokenizer,
|
70 |
+
torch_dtype=torch.bfloat16,
|
71 |
+
trust_remote_code=True,
|
72 |
+
device_map="auto",
|
73 |
+
)
|
74 |
+
|
75 |
+
sequences = pipeline(
|
76 |
+
"What does the drug ceftrioxone do?\nDoctor:",
|
77 |
+
max_length=200,
|
78 |
+
do_sample=True,
|
79 |
+
top_k=40,
|
80 |
+
num_return_sequences=1,
|
81 |
+
eos_token_id=tokenizer.eos_token_id,
|
82 |
+
)
|
83 |
+
|
84 |
+
for seq in sequences:
|
85 |
+
print(f"Result: {seq['generated_text']}")
|
86 |
+
```
|
87 |
+
|
88 |
+
## Training Parameters
|
89 |
+
|
90 |
+
The model was trained for 4500 steps or 1 epoch on a custom, unreleased dataset named `medconcat`.
|
91 |
+
`medconcat` contains only human generated content and weighs in at over 100MiB of raw text.
|
92 |
+
|
93 |
+
The below bash script initiated training in `4bit` mode for a rather large LoRA:
|
94 |
+
|
95 |
+
| Item | Amount | Units |
|
96 |
+
|---------------|--------|-------|
|
97 |
+
| LoRA Rank | 128 | ~ |
|
98 |
+
| LoRA Alpha | 256 | ~ |
|
99 |
+
| Learning Rate | 1e-3 | SI |
|
100 |
+
| Dropout | 5 | % |
|
101 |
+
|
102 |
+
|
103 |
+
```bash
|
104 |
+
CURRENTDATEONLY=`date +"%b %d %Y"`
|
105 |
+
|
106 |
+
sudo nvidia-smi -i 1 -pl 250
|
107 |
+
|
108 |
+
export CUDA_VISIBLE_DEVICES=0
|
109 |
+
|
110 |
+
nohup python qlora.py \
|
111 |
+
--model_name_or_path models/tiiuae_falcon-40b \
|
112 |
+
--output_dir ./loras/medfalcon2.1a-40b \
|
113 |
+
--logging_steps 100 \
|
114 |
+
--save_strategy steps \
|
115 |
+
--data_seed 42 \
|
116 |
+
--save_steps 200 \
|
117 |
+
--save_total_limit 40 \
|
118 |
+
--evaluation_strategy steps \
|
119 |
+
--eval_dataset_size 1024 \
|
120 |
+
--max_eval_samples 1000 \
|
121 |
+
--per_device_eval_batch_size 1 \
|
122 |
+
--max_new_tokens 32 \
|
123 |
+
--dataloader_num_workers 3 \
|
124 |
+
--group_by_length \
|
125 |
+
--logging_strategy steps \
|
126 |
+
--remove_unused_columns False \
|
127 |
+
--do_train \
|
128 |
+
--lora_r 128 \
|
129 |
+
--lora_alpha 256 \
|
130 |
+
--lora_modules all \
|
131 |
+
--double_quant \
|
132 |
+
--quant_type nf4 \
|
133 |
+
--bf16 \
|
134 |
+
--bits 4 \
|
135 |
+
--warmup_ratio 0.03 \
|
136 |
+
--lr_scheduler_type constant \
|
137 |
+
--gradient_checkpointing \
|
138 |
+
--dataset="training/datasets/medconcat/" \
|
139 |
+
--dataset_format alpaca \
|
140 |
+
--trust_remote_code=True \
|
141 |
+
--source_max_len 16 \
|
142 |
+
--target_max_len 512 \
|
143 |
+
--per_device_train_batch_size 1 \
|
144 |
+
--gradient_accumulation_steps 16 \
|
145 |
+
--max_steps 4500 \
|
146 |
+
--eval_steps 1000 \
|
147 |
+
--learning_rate 0.0001 \
|
148 |
+
--adam_beta2 0.999 \
|
149 |
+
--max_grad_norm 0.3 \
|
150 |
+
--lora_dropout 0.05 \
|
151 |
+
--weight_decay 0.0 \
|
152 |
+
--seed 0 > "${CURRENTDATEONLY}-finetune-medfalcon2.1a.log" &
|
153 |
+
```
|
img.png
ADDED