mwitiderrick commited on
Commit
152919e
·
1 Parent(s): f07a6b5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: upstage/SOLAR-10.7B-Instruct-v1.0
3
+ inference: false
4
+ model_type: llama
5
+ prompt_template: |
6
+ ### User:\n
7
+ {prompt}
8
+ ### Assistant:\n
9
+ quantized_by: mwitiderrick
10
+ tags:
11
+ - deepsparse
12
+ ---
13
+ # SOLAR-10.7B-Instruct-v1.0 - DeepSparse
14
+ This repo contains model files for [SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.
15
+
16
+ This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml).
17
+
18
+ ## Inference
19
+ Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs:
20
+ ```bash
21
+ pip install deepsparse-nightly[llm]
22
+ ```
23
+ Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md):
24
+ ```python
25
+ from deepsparse import TextGeneration
26
+
27
+ prompt = "How to make banana bread?"
28
+ formatted_prompt = f"### User:\n{prompt}\n\n### Assistant:\n"
29
+
30
+ model = TextGeneration(model_path="hf:nm-testing/SOLAR-10.7B-Instruct-v1.0-pruned50-quant")
31
+
32
+ print(model(formatted_prompt, max_new_tokens=200).generations[0].text)
33
+ """
34
+ To make banana bread, follow these steps:
35
+
36
+ 1. Gather ingredients:
37
+ - 4 ripe bananas
38
+ - 1 cup of flour (all-purpose)
39
+ - 1 teaspoon baking soda
40
+ - 1/2 cup of softened butter
41
+ - 1/2 cup of sugar
42
+ - 1/2 teaspoon salt
43
+ - 1 teaspoon vanilla extract
44
+ - 1/2 cup of milk
45
+
46
+ 2. Preheat your oven: Preheat your oven to 350°F (177°C).
47
+
48
+ 3. Prepare a loaf pan: Grease a loaf pan with butter or use a non-stick baking pan.
49
+
50
+ 4. Mash the bananas: Peel the bananas and mash them in a bowl.
51
+
52
+ 5. Mix the dry ingredients: In a separate bowl, mix the flour, baking soda, and salt.
53
+ """
54
+ ```
55
+
56
+ ## Prompt template
57
+ ```
58
+
59
+ ### User:\
60
+ {prompt}
61
+ ### Assistant:\n
62
+ ```
63
+ ## Sparsification
64
+ For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below.
65
+
66
+ ```bash
67
+ git clone https://github.com/neuralmagic/sparseml
68
+ pip install -e "sparseml[transformers]"
69
+ python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py upstage/SOLAR-10.7B-Instruct-v1.0 open_platypus --recipe recipe.yaml --save True
70
+ python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment
71
+ cp deployment/model.onnx deployment/model-orig.onnx
72
+ ```
73
+ Run this kv-cache injection to speed up the model at inference by caching the Key and Value states:
74
+ ```python
75
+ import os
76
+ import onnx
77
+ from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector
78
+ input_file = "deployment/model-orig.onnx"
79
+ output_file = "deployment/model.onnx"
80
+ model = onnx.load(input_file, load_external_data=False)
81
+ model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model)
82
+ onnx.save(model, output_file)
83
+ print(f"Modified model saved to: {output_file}")
84
+ ```
85
+ Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models.
86
+ ## Slack
87
+
88
+ For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)