mwitiderrick commited on
Commit
1154a92
·
1 Parent(s): d383b7f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -28
README.md CHANGED
@@ -1,17 +1,17 @@
1
  ---
2
- base_model: upstage/SOLAR-10.7B-Instruct-v1.0
3
  inference: false
4
- model_type: llama
5
  prompt_template: |
6
- ### User:\n
7
  {prompt}
8
- ### Assistant:\n
9
  quantized_by: mwitiderrick
10
  tags:
11
  - deepsparse
12
  ---
13
- # SOLAR-10.7B-Instruct-v1.0 - DeepSparse
14
- This repo contains model files for [SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.
15
 
16
  This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml).
17
 
@@ -25,40 +25,22 @@ Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/d
25
  from deepsparse import TextGeneration
26
 
27
  prompt = "How to make banana bread?"
28
- formatted_prompt = f"### User:\n{prompt}\n\n### Assistant:\n"
29
 
30
  model = TextGeneration(model_path="hf:nm-testing/SOLAR-10.7B-Instruct-v1.0-pruned50-quant")
31
 
32
  print(model(formatted_prompt, max_new_tokens=200).generations[0].text)
33
  """
34
- To make banana bread, follow these steps:
35
 
36
- 1. Gather ingredients:
37
- - 4 ripe bananas
38
- - 1 cup of flour (all-purpose)
39
- - 1 teaspoon baking soda
40
- - 1/2 cup of softened butter
41
- - 1/2 cup of sugar
42
- - 1/2 teaspoon salt
43
- - 1 teaspoon vanilla extract
44
- - 1/2 cup of milk
45
-
46
- 2. Preheat your oven: Preheat your oven to 350°F (177°C).
47
-
48
- 3. Prepare a loaf pan: Grease a loaf pan with butter or use a non-stick baking pan.
49
-
50
- 4. Mash the bananas: Peel the bananas and mash them in a bowl.
51
-
52
- 5. Mix the dry ingredients: In a separate bowl, mix the flour, baking soda, and salt.
53
  """
54
  ```
55
 
56
  ## Prompt template
57
  ```
58
 
59
- ### User:\
60
  {prompt}
61
- ### Assistant:\n
62
  ```
63
  ## Sparsification
64
  For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below.
@@ -66,7 +48,7 @@ For details on how this model was sparsified, see the `recipe.yaml` in this repo
66
  ```bash
67
  git clone https://github.com/neuralmagic/sparseml
68
  pip install -e "sparseml[transformers]"
69
- python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py upstage/SOLAR-10.7B-Instruct-v1.0 open_platypus --recipe recipe.yaml --save True
70
  python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment
71
  cp deployment/model.onnx deployment/model-orig.onnx
72
  ```
 
1
  ---
2
+ base_model: mncai/mistral-7b-dpo-merge-v1.1
3
  inference: false
4
+ model_type: mistral
5
  prompt_template: |
6
+ <|user|>\n
7
  {prompt}
8
+ |assistant|>\n
9
  quantized_by: mwitiderrick
10
  tags:
11
  - deepsparse
12
  ---
13
+ # Mistral-7b-dpo-merge-v1.1 - DeepSparse
14
+ This repo contains model files for [Mistral-7b-dpo-merge-v1.1](https://huggingface.co/mncai/mistral-7b-dpo-merge-v1.1/tree/main) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.
15
 
16
  This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml).
17
 
 
25
  from deepsparse import TextGeneration
26
 
27
  prompt = "How to make banana bread?"
28
+ formatted_prompt = f"<|user|>\n{prompt}\n<|assistant|>\n"
29
 
30
  model = TextGeneration(model_path="hf:nm-testing/SOLAR-10.7B-Instruct-v1.0-pruned50-quant")
31
 
32
  print(model(formatted_prompt, max_new_tokens=200).generations[0].text)
33
  """
 
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  """
36
  ```
37
 
38
  ## Prompt template
39
  ```
40
 
41
+ <|user|>\n
42
  {prompt}
43
+ |assistant|>\n
44
  ```
45
  ## Sparsification
46
  For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below.
 
48
  ```bash
49
  git clone https://github.com/neuralmagic/sparseml
50
  pip install -e "sparseml[transformers]"
51
+ python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py mncai/mistral-7b-dpo-merge-v1.1 open_platypus --precision float16 --recipe recipe.yaml --save True
52
  python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment
53
  cp deployment/model.onnx deployment/model-orig.onnx
54
  ```