nlpzhaof commited on
Commit
4071e61
·
verified ·
1 Parent(s): 6931393

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -141
README.md CHANGED
@@ -1,85 +1,22 @@
 
 
 
 
 
1
 
2
  # AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability
3
  [[Project Page](https://aligngpt-vl.github.io/)] [[Paper](https://arxiv.org/abs/2405.14129)] [[Demo](http://47.116.173.89:7870/)] [[Model](https://huggingface.co/nlpzhaof)]
4
 
5
-
6
-
7
  Authors: [Fei Zhao*](https://scholar.google.com/citations?user=V01xzWQAAAAJ&hl=zh-CN), Taotian Pang*, Chunhui Li, [Zhen Wu](https://scholar.google.com/citations?user=IoGlgtoAAAAJ&hl=zh-CN), Junjie Guo, Shangyu Xing, [Xinyu Dai](https://scholar.google.com/citations?user=zpWB1CgAAAAJ&hl=zh-CN)
8
 
9
- <div align="center">
10
- <img src="./assert/architecture.png" width="800px">
11
- </div>
12
-
13
- <!-- ![architecture](./assert/architecture.png) -->
14
 
15
  ## News and Updates
16
  - [5/24] 🔥 We released **AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability**. Checkout the [paper](https://arxiv.org/abs/2405.14129) and [demo](http://47.116.173.89:7870/).
17
  - [5/24] 🔥 The data is not ready yet. We will upload it within a week.
18
 
19
 
20
- ## Contents
21
- - [Install](#install)
22
- - [Model Zoo](#model-zoo)
23
- - [Demo](#demo)
24
- - [Training](#training)
25
- - [Evaluation](#evaluation)
26
- - [Performance](#performance)
27
-
28
- ## Install
29
-
30
- ### Docker
31
-
32
- We recommend to use docker to prepare the environment.
33
-
34
- 1. Clone this repository and navigate to AlignGPT folder
35
-
36
- ```bash
37
- git clone https://github.com/AlignGPT-VL/AlignGPT.git
38
- cd AlignGPT
39
- ```
40
-
41
- 2. Build the docker image
42
-
43
- ```bash
44
- cd deploy
45
- docker build -t aligngpt:1.0 .
46
- ```
47
-
48
- If your machine cannot connect to github to download the flash attention pip wheel, you can download it manually on https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.5/flash_attn-2.5.5+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl and put it to `deploy/flash_attn-2.5.5+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl`.
49
-
50
- 3. To start the container, run the following command in the project root directory
51
-
52
- ```bash
53
- docker run --gpus all --ipc=host --network=host --rm -it -v .:/workspace aligngpt:1.0
54
- ```
55
-
56
- More `-v` options can be added to mount the data and output directories.
57
-
58
- ### Conda
59
-
60
- 1. Clone this repository and navigate to AlignGPT folder
61
-
62
- ```bash
63
- git clone https://github.com/AlignGPT-VL/AlignGPT.git
64
- cd AlignGPT
65
- ```
66
-
67
- 2. Install Package
68
-
69
- ```Shell
70
- conda create -n aligngpt python=3.10 -y
71
- conda activate aligngpt
72
- pip install --upgrade pip # enable PEP 660 support
73
- pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu118
74
- pip install -r deploy/requirements.txt
75
- ```
76
-
77
- Finally, you need to install flash-attention manually before running the model.
78
-
79
  ## Model Zoo
80
 
81
- Please download the weights for LLM, Vision Backbone and place them in the `./playground/model` folder, we also provide all the weights for the AlignGPT checkpoint.
82
-
83
  | Model | LLM | Vision Backbone | Pre-training | Instruct-tuning |
84
  |----------|----------|-----------|---|---|
85
  | AlignGPT-7B | [Vicuna 7B](https://huggingface.co/lmsys/vicuna-7b-v1.5) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |[aligngpt-7b-pretrain](https://huggingface.co/nlpzhaof/aligngpt-7b-pretrain/tree/main)| [aligngpt-7b](https://huggingface.co/nlpzhaof/aligngpt-7b/tree/main)|
@@ -87,75 +24,6 @@ Please download the weights for LLM, Vision Backbone and place them in the `./pl
87
  | AlignGPT-LLaMA2 | [LLaMA-2-7B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |To be released| To be released|
88
  | AlignGPT-LLaMA3 | [LLaMA-3-8B-Base](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |To be released|To be released|
89
 
90
- ## Demo
91
-
92
- ### Start Gradio UI
93
- You can start gradio service with the following command:
94
-
95
- ```
96
- cd AlignGPT
97
- bash start_api.sh
98
- ```
99
- This script will launch three processes: the controller, the Gradio web server, and the model worker, all of which will run in the background. You can view logs of these processes in folder `log/`, and view process status with command `ps -ef | grep src.serve`.
100
-
101
- ### CLI Inference
102
- Chat about images using AlignGPT without the need of Gradio interface.
103
- ```
104
- python -m src.serve.cli \
105
- --model-path playground/model/aligngpt-13b \
106
- --image-file "image folder/image.jpg" \
107
- ```
108
-
109
- ## Training
110
-
111
- We place all training data in the `./playground/data` folder. Please download [aligngpt_pretrain_data]() from HuggingFace and place it in `./playground/data`. The details are introduced below.
112
-
113
- ### Pre-training
114
- * **Dataset**: We use the 558K image-text pairs in the pre-training phase. Organize them in `./playground/data` as follows:
115
-
116
- ```
117
- ├── LLaVA-Pretrain
118
- │ └── blip_laion_cc_sbu_558k_with_similarity_number.json
119
- │ └── images
120
- ```
121
-
122
- * **Run**: You can launch the pre-training phase using the following command:
123
- ```
124
- bash scripts/pretrain.sh
125
- ```
126
- Before running the script of pretraining, you should set the arguments related to **directories** of model checkpoints, data and outputs, *i.e.*, `model_name_or_path`, `data_path`, `image_folder`, `vision_tower` and `output_dir`.
127
-
128
- ### Instruction-tuning
129
- * **Dataset**: We used 665K image-text pairs/text data in the instruction-tuning phase. The images corresponding to these data include: `COCO`, `GQA`, `OCR-VQA`, `TextVQA`, and `VisualGenome`. Organize them in `./playground/data` as follows:
130
-
131
- ```
132
- ├── llava_v1_5_mix665k.json
133
- ├── coco
134
- │ └── train2017
135
- ├── gqa
136
- │ └── images
137
- ├── ocr_vqa
138
- │ └── images
139
- ├── textvqa
140
- │ └── train_images
141
- └── vg
142
- ├── VG_100K
143
- └── VG_100K_2
144
- ```
145
-
146
- * **Run**: You can launch the instruction-tuning stage using the following command:
147
- ```
148
- bash scripts/finetune.sh
149
- ```
150
- Before running the script of instruction tuning, you should set the argument `pretrain_mm_mlp_align`, which is the path where you store the weights of the pre-training phase.
151
-
152
- ## Evaluation
153
-
154
- We conduct evaluation on 12 benchmarks. The dataset to be evaluated is placed in `./playground/data/eval`. Please download [aligngpt_eval_data]() from HuggingFace and place it in `./playground/data/eval`. It contains custom annotations, scripts, and prediction files for AlignGPT. Here, we demonstrate how to evaluate the performance of our model on `MME` dataset. We use the following command to run the evaluation stage:
155
- ```
156
- CUDA_VISIBLE_DEVICES=0 bash scripts/eval/mme.sh
157
- ```
158
- You should set the directories of the model checkpoints and datasets in the scripts before running it. The evaluation of other datasets can be found in [Evaluation.md](docs/Evaluation.md).
159
 
160
  ## Performance
161
  | Model | VQAv2 | GQA | VizWiz | SQA | T-VQA | POPE | MME | MM-Bench | MM-Bench-CN | SEED | LLaVA-Bench-Wild | MM-Vet |
@@ -176,12 +44,9 @@ If you find AlignGPT useful for your research and applications, please cite usin
176
  }
177
  ```
178
 
179
- ## Acknowledgement
180
- We build our project based on [LLaVA: Large Language and Vision Assistant](https://github.com/haotian-liu/LLaVA).
181
-
182
  ## License
183
 
184
  [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
185
  [![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE)
186
 
187
- The data and checkpoint is intended and licensed for research use only. They are also restricted to uses that follow the license agreement of LLaMA, Vicuna and GPT-4. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes.
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ ---
6
 
7
  # AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability
8
  [[Project Page](https://aligngpt-vl.github.io/)] [[Paper](https://arxiv.org/abs/2405.14129)] [[Demo](http://47.116.173.89:7870/)] [[Model](https://huggingface.co/nlpzhaof)]
9
 
 
 
10
  Authors: [Fei Zhao*](https://scholar.google.com/citations?user=V01xzWQAAAAJ&hl=zh-CN), Taotian Pang*, Chunhui Li, [Zhen Wu](https://scholar.google.com/citations?user=IoGlgtoAAAAJ&hl=zh-CN), Junjie Guo, Shangyu Xing, [Xinyu Dai](https://scholar.google.com/citations?user=zpWB1CgAAAAJ&hl=zh-CN)
11
 
 
 
 
 
 
12
 
13
  ## News and Updates
14
  - [5/24] 🔥 We released **AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability**. Checkout the [paper](https://arxiv.org/abs/2405.14129) and [demo](http://47.116.173.89:7870/).
15
  - [5/24] 🔥 The data is not ready yet. We will upload it within a week.
16
 
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  ## Model Zoo
19
 
 
 
20
  | Model | LLM | Vision Backbone | Pre-training | Instruct-tuning |
21
  |----------|----------|-----------|---|---|
22
  | AlignGPT-7B | [Vicuna 7B](https://huggingface.co/lmsys/vicuna-7b-v1.5) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |[aligngpt-7b-pretrain](https://huggingface.co/nlpzhaof/aligngpt-7b-pretrain/tree/main)| [aligngpt-7b](https://huggingface.co/nlpzhaof/aligngpt-7b/tree/main)|
 
24
  | AlignGPT-LLaMA2 | [LLaMA-2-7B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |To be released| To be released|
25
  | AlignGPT-LLaMA3 | [LLaMA-3-8B-Base](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |To be released|To be released|
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  ## Performance
29
  | Model | VQAv2 | GQA | VizWiz | SQA | T-VQA | POPE | MME | MM-Bench | MM-Bench-CN | SEED | LLaVA-Bench-Wild | MM-Vet |
 
44
  }
45
  ```
46
 
 
 
 
47
  ## License
48
 
49
  [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
50
  [![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE)
51
 
52
+ The data and checkpoint is intended and licensed for research use only. They are also restricted to uses that follow the license agreement of LLaMA, Vicuna and GPT-4. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes.