Update README.md
Browse files
README.md
CHANGED
@@ -1,85 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
# AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability
|
3 |
[[Project Page](https://aligngpt-vl.github.io/)] [[Paper](https://arxiv.org/abs/2405.14129)] [[Demo](http://47.116.173.89:7870/)] [[Model](https://huggingface.co/nlpzhaof)]
|
4 |
|
5 |
-
|
6 |
-
|
7 |
Authors: [Fei Zhao*](https://scholar.google.com/citations?user=V01xzWQAAAAJ&hl=zh-CN), Taotian Pang*, Chunhui Li, [Zhen Wu](https://scholar.google.com/citations?user=IoGlgtoAAAAJ&hl=zh-CN), Junjie Guo, Shangyu Xing, [Xinyu Dai](https://scholar.google.com/citations?user=zpWB1CgAAAAJ&hl=zh-CN)
|
8 |
|
9 |
-
<div align="center">
|
10 |
-
<img src="./assert/architecture.png" width="800px">
|
11 |
-
</div>
|
12 |
-
|
13 |
-
<!-- ![architecture](./assert/architecture.png) -->
|
14 |
|
15 |
## News and Updates
|
16 |
- [5/24] 🔥 We released **AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability**. Checkout the [paper](https://arxiv.org/abs/2405.14129) and [demo](http://47.116.173.89:7870/).
|
17 |
- [5/24] 🔥 The data is not ready yet. We will upload it within a week.
|
18 |
|
19 |
|
20 |
-
## Contents
|
21 |
-
- [Install](#install)
|
22 |
-
- [Model Zoo](#model-zoo)
|
23 |
-
- [Demo](#demo)
|
24 |
-
- [Training](#training)
|
25 |
-
- [Evaluation](#evaluation)
|
26 |
-
- [Performance](#performance)
|
27 |
-
|
28 |
-
## Install
|
29 |
-
|
30 |
-
### Docker
|
31 |
-
|
32 |
-
We recommend to use docker to prepare the environment.
|
33 |
-
|
34 |
-
1. Clone this repository and navigate to AlignGPT folder
|
35 |
-
|
36 |
-
```bash
|
37 |
-
git clone https://github.com/AlignGPT-VL/AlignGPT.git
|
38 |
-
cd AlignGPT
|
39 |
-
```
|
40 |
-
|
41 |
-
2. Build the docker image
|
42 |
-
|
43 |
-
```bash
|
44 |
-
cd deploy
|
45 |
-
docker build -t aligngpt:1.0 .
|
46 |
-
```
|
47 |
-
|
48 |
-
If your machine cannot connect to github to download the flash attention pip wheel, you can download it manually on https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.5/flash_attn-2.5.5+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl and put it to `deploy/flash_attn-2.5.5+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl`.
|
49 |
-
|
50 |
-
3. To start the container, run the following command in the project root directory
|
51 |
-
|
52 |
-
```bash
|
53 |
-
docker run --gpus all --ipc=host --network=host --rm -it -v .:/workspace aligngpt:1.0
|
54 |
-
```
|
55 |
-
|
56 |
-
More `-v` options can be added to mount the data and output directories.
|
57 |
-
|
58 |
-
### Conda
|
59 |
-
|
60 |
-
1. Clone this repository and navigate to AlignGPT folder
|
61 |
-
|
62 |
-
```bash
|
63 |
-
git clone https://github.com/AlignGPT-VL/AlignGPT.git
|
64 |
-
cd AlignGPT
|
65 |
-
```
|
66 |
-
|
67 |
-
2. Install Package
|
68 |
-
|
69 |
-
```Shell
|
70 |
-
conda create -n aligngpt python=3.10 -y
|
71 |
-
conda activate aligngpt
|
72 |
-
pip install --upgrade pip # enable PEP 660 support
|
73 |
-
pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu118
|
74 |
-
pip install -r deploy/requirements.txt
|
75 |
-
```
|
76 |
-
|
77 |
-
Finally, you need to install flash-attention manually before running the model.
|
78 |
-
|
79 |
## Model Zoo
|
80 |
|
81 |
-
Please download the weights for LLM, Vision Backbone and place them in the `./playground/model` folder, we also provide all the weights for the AlignGPT checkpoint.
|
82 |
-
|
83 |
| Model | LLM | Vision Backbone | Pre-training | Instruct-tuning |
|
84 |
|----------|----------|-----------|---|---|
|
85 |
| AlignGPT-7B | [Vicuna 7B](https://huggingface.co/lmsys/vicuna-7b-v1.5) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |[aligngpt-7b-pretrain](https://huggingface.co/nlpzhaof/aligngpt-7b-pretrain/tree/main)| [aligngpt-7b](https://huggingface.co/nlpzhaof/aligngpt-7b/tree/main)|
|
@@ -87,75 +24,6 @@ Please download the weights for LLM, Vision Backbone and place them in the `./pl
|
|
87 |
| AlignGPT-LLaMA2 | [LLaMA-2-7B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |To be released| To be released|
|
88 |
| AlignGPT-LLaMA3 | [LLaMA-3-8B-Base](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |To be released|To be released|
|
89 |
|
90 |
-
## Demo
|
91 |
-
|
92 |
-
### Start Gradio UI
|
93 |
-
You can start gradio service with the following command:
|
94 |
-
|
95 |
-
```
|
96 |
-
cd AlignGPT
|
97 |
-
bash start_api.sh
|
98 |
-
```
|
99 |
-
This script will launch three processes: the controller, the Gradio web server, and the model worker, all of which will run in the background. You can view logs of these processes in folder `log/`, and view process status with command `ps -ef | grep src.serve`.
|
100 |
-
|
101 |
-
### CLI Inference
|
102 |
-
Chat about images using AlignGPT without the need of Gradio interface.
|
103 |
-
```
|
104 |
-
python -m src.serve.cli \
|
105 |
-
--model-path playground/model/aligngpt-13b \
|
106 |
-
--image-file "image folder/image.jpg" \
|
107 |
-
```
|
108 |
-
|
109 |
-
## Training
|
110 |
-
|
111 |
-
We place all training data in the `./playground/data` folder. Please download [aligngpt_pretrain_data]() from HuggingFace and place it in `./playground/data`. The details are introduced below.
|
112 |
-
|
113 |
-
### Pre-training
|
114 |
-
* **Dataset**: We use the 558K image-text pairs in the pre-training phase. Organize them in `./playground/data` as follows:
|
115 |
-
|
116 |
-
```
|
117 |
-
├── LLaVA-Pretrain
|
118 |
-
│ └── blip_laion_cc_sbu_558k_with_similarity_number.json
|
119 |
-
│ └── images
|
120 |
-
```
|
121 |
-
|
122 |
-
* **Run**: You can launch the pre-training phase using the following command:
|
123 |
-
```
|
124 |
-
bash scripts/pretrain.sh
|
125 |
-
```
|
126 |
-
Before running the script of pretraining, you should set the arguments related to **directories** of model checkpoints, data and outputs, *i.e.*, `model_name_or_path`, `data_path`, `image_folder`, `vision_tower` and `output_dir`.
|
127 |
-
|
128 |
-
### Instruction-tuning
|
129 |
-
* **Dataset**: We used 665K image-text pairs/text data in the instruction-tuning phase. The images corresponding to these data include: `COCO`, `GQA`, `OCR-VQA`, `TextVQA`, and `VisualGenome`. Organize them in `./playground/data` as follows:
|
130 |
-
|
131 |
-
```
|
132 |
-
├── llava_v1_5_mix665k.json
|
133 |
-
├── coco
|
134 |
-
│ └── train2017
|
135 |
-
├── gqa
|
136 |
-
│ └── images
|
137 |
-
├── ocr_vqa
|
138 |
-
│ └── images
|
139 |
-
├── textvqa
|
140 |
-
│ └── train_images
|
141 |
-
└── vg
|
142 |
-
├── VG_100K
|
143 |
-
└── VG_100K_2
|
144 |
-
```
|
145 |
-
|
146 |
-
* **Run**: You can launch the instruction-tuning stage using the following command:
|
147 |
-
```
|
148 |
-
bash scripts/finetune.sh
|
149 |
-
```
|
150 |
-
Before running the script of instruction tuning, you should set the argument `pretrain_mm_mlp_align`, which is the path where you store the weights of the pre-training phase.
|
151 |
-
|
152 |
-
## Evaluation
|
153 |
-
|
154 |
-
We conduct evaluation on 12 benchmarks. The dataset to be evaluated is placed in `./playground/data/eval`. Please download [aligngpt_eval_data]() from HuggingFace and place it in `./playground/data/eval`. It contains custom annotations, scripts, and prediction files for AlignGPT. Here, we demonstrate how to evaluate the performance of our model on `MME` dataset. We use the following command to run the evaluation stage:
|
155 |
-
```
|
156 |
-
CUDA_VISIBLE_DEVICES=0 bash scripts/eval/mme.sh
|
157 |
-
```
|
158 |
-
You should set the directories of the model checkpoints and datasets in the scripts before running it. The evaluation of other datasets can be found in [Evaluation.md](docs/Evaluation.md).
|
159 |
|
160 |
## Performance
|
161 |
| Model | VQAv2 | GQA | VizWiz | SQA | T-VQA | POPE | MME | MM-Bench | MM-Bench-CN | SEED | LLaVA-Bench-Wild | MM-Vet |
|
@@ -176,12 +44,9 @@ If you find AlignGPT useful for your research and applications, please cite usin
|
|
176 |
}
|
177 |
```
|
178 |
|
179 |
-
## Acknowledgement
|
180 |
-
We build our project based on [LLaVA: Large Language and Vision Assistant](https://github.com/haotian-liu/LLaVA).
|
181 |
-
|
182 |
## License
|
183 |
|
184 |
[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
|
185 |
[![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE)
|
186 |
|
187 |
-
The data and checkpoint is intended and licensed for research use only. They are also restricted to uses that follow the license agreement of LLaMA, Vicuna and GPT-4. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes.
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
---
|
6 |
|
7 |
# AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability
|
8 |
[[Project Page](https://aligngpt-vl.github.io/)] [[Paper](https://arxiv.org/abs/2405.14129)] [[Demo](http://47.116.173.89:7870/)] [[Model](https://huggingface.co/nlpzhaof)]
|
9 |
|
|
|
|
|
10 |
Authors: [Fei Zhao*](https://scholar.google.com/citations?user=V01xzWQAAAAJ&hl=zh-CN), Taotian Pang*, Chunhui Li, [Zhen Wu](https://scholar.google.com/citations?user=IoGlgtoAAAAJ&hl=zh-CN), Junjie Guo, Shangyu Xing, [Xinyu Dai](https://scholar.google.com/citations?user=zpWB1CgAAAAJ&hl=zh-CN)
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
## News and Updates
|
14 |
- [5/24] 🔥 We released **AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability**. Checkout the [paper](https://arxiv.org/abs/2405.14129) and [demo](http://47.116.173.89:7870/).
|
15 |
- [5/24] 🔥 The data is not ready yet. We will upload it within a week.
|
16 |
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
## Model Zoo
|
19 |
|
|
|
|
|
20 |
| Model | LLM | Vision Backbone | Pre-training | Instruct-tuning |
|
21 |
|----------|----------|-----------|---|---|
|
22 |
| AlignGPT-7B | [Vicuna 7B](https://huggingface.co/lmsys/vicuna-7b-v1.5) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |[aligngpt-7b-pretrain](https://huggingface.co/nlpzhaof/aligngpt-7b-pretrain/tree/main)| [aligngpt-7b](https://huggingface.co/nlpzhaof/aligngpt-7b/tree/main)|
|
|
|
24 |
| AlignGPT-LLaMA2 | [LLaMA-2-7B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |To be released| To be released|
|
25 |
| AlignGPT-LLaMA3 | [LLaMA-3-8B-Base](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |To be released|To be released|
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
## Performance
|
29 |
| Model | VQAv2 | GQA | VizWiz | SQA | T-VQA | POPE | MME | MM-Bench | MM-Bench-CN | SEED | LLaVA-Bench-Wild | MM-Vet |
|
|
|
44 |
}
|
45 |
```
|
46 |
|
|
|
|
|
|
|
47 |
## License
|
48 |
|
49 |
[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
|
50 |
[![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE)
|
51 |
|
52 |
+
The data and checkpoint is intended and licensed for research use only. They are also restricted to uses that follow the license agreement of LLaMA, Vicuna and GPT-4. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes.
|