egon-nlpulse commited on
Commit
714fa24
1 Parent(s): 49e8900
Files changed (1) hide show
  1. README.md +21 -1
README.md CHANGED
@@ -29,7 +29,24 @@ Details:
29
  ```
30
  3 epochs, all dataset samples (split=train), 939 steps
31
  1 x GPU NVidia RTX 3060 12GB - max. GPU memory: 7.44 GB
32
- duration: 1h45min
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  ```
34
 
35
  ## Inference
@@ -78,3 +95,6 @@ pip install -q -U scipy
78
  ## Scripts
79
  [https://github.com/nlpulse-io/sample_codes/tree/main/fine-tuning/peft_quantization_4bits/gptj-6b](https://github.com/nlpulse-io/sample_codes/tree/main/fine-tuning/peft_quantization_4bits/gptj-6b)
80
 
 
 
 
 
29
  ```
30
  3 epochs, all dataset samples (split=train), 939 steps
31
  1 x GPU NVidia RTX 3060 12GB - max. GPU memory: 7.44 GB
32
+ Duration: 1h45min
33
+
34
+ $ nvidia-smi && free -h
35
+ +-----------------------------------------------------------------------------+
36
+ | NVIDIA-SMI 515.105.01 Driver Version: 515.105.01 CUDA Version: 11.7 |
37
+ |-------------------------------+----------------------+----------------------+
38
+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
39
+ | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
40
+ | | | MIG M. |
41
+ |===============================+======================+======================|
42
+ | 1 NVIDIA GeForce ... Off | 00000000:04:00.0 Off | N/A |
43
+ |100% 89C P2 166W / 170W | 7439MiB / 12288MiB | 93% Default |
44
+ | | | N/A |
45
+ +-------------------------------+----------------------+----------------------+
46
+ total used free shared buff/cache available
47
+ Mem: 77Gi 14Gi 23Gi 79Mi 39Gi 62Gi
48
+ Swap: 37Gi 0B 37Gi
49
+
50
  ```
51
 
52
  ## Inference
 
95
  ## Scripts
96
  [https://github.com/nlpulse-io/sample_codes/tree/main/fine-tuning/peft_quantization_4bits/gptj-6b](https://github.com/nlpulse-io/sample_codes/tree/main/fine-tuning/peft_quantization_4bits/gptj-6b)
97
 
98
+
99
+ # References
100
+ [https://towardsdatascience.com/qlora-fine-tune-a-large-language-model-on-your-gpu-27bed5a03e2b](https://towardsdatascience.com/qlora-fine-tune-a-large-language-model-on-your-gpu-27bed5a03e2b)