metadata
license: apache-2.0
datasets:
- squad_v2
model-index:
- name: nlpconnect/deberta-v3-xsmall-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 79.3917
name: Exact Match
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTFiMWI5YzFlMDZhMzc2NDIwYjNiZmIyMThmOWQxYjFjZmM2ZDQ0OGM2NmNlNmI3Y2U2N2JjMmVkZTgyZjNiOCIsInZlcnNpb24iOjF9.MCw9UJ3MI3Lf5hvOgk7Lw2xZfN4678p7ebG3vnGXX_Avw6fELTPwxZ9qGA-9tL00p4NxaSb3Cx6XAFvWetAIBA
- type: f1
value: 82.6738
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjdiYWY2MzU4YjZhMWQzZGJhZTk3NzU3Y2UwYmQ4MzliZmQxOGUxZDllN2Y0ZmZhYjVlNTE0MzY1MjU5OWMwMCIsInZlcnNpb24iOjF9.zeWLwXy77n0YKxGA5gjySe8p-_nPQxbiPnvQU2tF45IyMmlYKUuLeq4hJnNe-5NgriTf8xkBJBE7Cr5lWHy_Cw
- task:
type: question-answering
name: Question Answering
dataset:
name: squad
type: squad
config: plain_text
split: validation
metrics:
- type: exact_match
value: 84.9246
name: Exact Match
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGJhYmU0Y2I4Y2UyOGVlOTlkMmQ2OTcyMTZkNTkwNTMzNzhmNzZiYjU4ZDkxMGM5NzAyMjk1M2ExNGIzOWU4NCIsInZlcnNpb24iOjF9.ql1rCId6lQ7Uwq2spG3q2fFppkFGHA1IWQjvyPRhvKdRNzApBO0mu9JjMAv4uNKZX-kmGEkI018_9tAzN7kwDw
- type: f1
value: 91.6201
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjBjMmI0OTFmODVjMzllZDM0NTdmNjU4NGI4NzA4NTJhOWVkMDQ5OTY0MDcyMWEwZTFkODNlY2VhZjU2NWJmZSIsInZlcnNpb24iOjF9.rGvF60bfWIXzB66C7fkdxCtZvRZ_m3onbLaNbs7M4M0Fk27xnMat6IAy1DeTztkOKLoiD2s2NQH6wXid83cgCw
Deberta-v3-xsmall-squad2
What is SQuAD?
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering.
Inference
from transformers import pipeline
qa = pipeline("question-answering", model="nlpconnect/deberta-v3-xsmall-squad2")
result = qa(context="My name is Sarah and I live in London", question="Where do I live?")
Accuracy
squad_v2 = {'exact': 79.392,
'f1': 82.674}
squad = {'exact': 84.925,
'f1': 91.620}