|
--- |
|
license: apache-2.0 |
|
base_model: yhavinga/t5-small-24L-ccmatrix-multi |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: final_classifications |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# final_classifications |
|
|
|
This model is a fine-tuned version of [yhavinga/t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1005 |
|
- F1: {'f1': 0.9592760180995475} |
|
- Precision: {'precision': 0.954954954954955} |
|
- Recall: {'recall': 0.9636363636363636} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------------------:|:---------------------------------:|:------------------------------:| |
|
| No log | 1.0 | 110 | 0.2362 | {'f1': 0.0} | {'precision': 0.0} | {'recall': 0.0} | |
|
| No log | 2.0 | 220 | 0.1164 | {'f1': 0.9502262443438914} | {'precision': 0.9459459459459459} | {'recall': 0.9545454545454546} | |
|
| No log | 3.0 | 330 | 0.0832 | {'f1': 0.9596412556053813} | {'precision': 0.9469026548672567} | {'recall': 0.9727272727272728} | |
|
| No log | 4.0 | 440 | 0.0918 | {'f1': 0.9549549549549549} | {'precision': 0.9464285714285714} | {'recall': 0.9636363636363636} | |
|
| 0.1554 | 5.0 | 550 | 0.0939 | {'f1': 0.9596412556053813} | {'precision': 0.9469026548672567} | {'recall': 0.9727272727272728} | |
|
| 0.1554 | 6.0 | 660 | 0.1005 | {'f1': 0.9592760180995475} | {'precision': 0.954954954954955} | {'recall': 0.9636363636363636} | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|