mmaction2 / docs /en /notes /pytorch2.0.md
niobures's picture
mmaction2
d3dbf03 verified

PyTorch 2.0 Compatibility and Benchmark

PyTorch introduced torch.compile in its 2.0 release. It compiles your model to speedup trainning & validation. We provide a benchmark result and compatibility of typical models in MMAction2. Except for one model (MViT) that fails to compile, the performance of other models remains consistent before and after compilation.

Config compiled Train time / iter (s) GPU memory (M) test metric
tsn_imagenet-pretrained-r50_8xb32-1x1x16-50e_sthv2-rgb False 0.50 42537 36.55
tsn_imagenet-pretrained-r50_8xb32-1x1x16-50e_sthv2-rgb True 0.61 53149 36.72
timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb False 0.688 14263 77.69
timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb True 0.691 13863 77.57
stgcn_8xb16-bone-u100-80e_ntu60-xsub-keypoint-2d False 0.0305 1184 91.69
stgcn_8xb16-bone-u100-80e_ntu60-xsub-keypoint-2d True 0.0298 1273 91.64
slowonly_r50_8xb16-u48-240e_ntu60-xsub-keypoint False 0.498 9581 93.6
slowonly_r50_8xb16-u48-240e_ntu60-xsub-keypoint True 0.505 11968 93.49
slowonly_kinetics400-pretrained-r50_8xb16-4x16x1-20e_ava21-rgb False 0.17 8278 20.76
slowonly_kinetics400-pretrained-r50_8xb16-4x16x1-20e_ava21-rgb True 0.1835 12004 21.67
swin-tiny-p244-w877_in1k-pre_8xb8-amp-32x2x1-30e_kinetics400-rgb False 0.323 21651 78.90
swin-tiny-p244-w877_in1k-pre_8xb8-amp-32x2x1-30e_kinetics400-rgb True 0.262 20905 78.70
slowonly_imagenet-pretrained-r50_8xb16-4x16x1-steplr-150e_kinetics400-rgb False 0.098 5777 75.12
slowonly_imagenet-pretrained-r50_8xb16-4x16x1-steplr-150e_kinetics400-rgb True 0.0942 7095 75.15
mvit-small-p244_32xb16-16x4x1-200e_kinetics400-rgb Fail incompatible incompatible incompatible