|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- clinc_oos |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: bert-base-uncased-finetuned-clinc_oos |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: clinc_oos |
|
type: clinc_oos |
|
config: plus |
|
split: test |
|
args: plus |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: |
|
accuracy: 0.8672727272727273 |
|
- name: F1 |
|
type: f1 |
|
value: |
|
f1: 0.8593551627139002 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-uncased-finetuned-clinc_oos |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the clinc_oos dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0863 |
|
- Accuracy: {'accuracy': 0.8672727272727273} |
|
- F1: {'f1': 0.8593551627139002} |
|
|
|
## Model Training Details |
|
|
|
| Parameter | Value | |
|
|----------------------|-----------------------------------| |
|
| **Task** | text-classification | |
|
| **Base Model Name** | bert-base-uncased | |
|
| **Dataset Name** | clinc_oos | |
|
| **Dataset Config** | plus | |
|
| **Batch Size** | 16 | |
|
| **Number of Epochs** | 3 | |
|
| **Learning Rate** | 0.00002 | |
|
|
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------:| |
|
| 4.3415 | 1.0 | 954 | 2.4724 | {'accuracy': 0.7769090909090909} | {'f1': 0.7596942777117995} | |
|
| 1.7949 | 2.0 | 1908 | 1.3415 | {'accuracy': 0.8538181818181818} | {'f1': 0.8441232118060242} | |
|
| 0.8898 | 3.0 | 2862 | 1.0863 | {'accuracy': 0.8672727272727273} | {'f1': 0.8593551627139002} | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|