nikhilajjarapu's picture
End of training
933f8db verified
|
raw
history blame
2.67 kB
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
base_model: microsoft/phi-1_5
model-index:
  - name: phi-1_5-finetuned-qlora-cluster-gsm8k-v2
    results: []

phi-1_5-finetuned-qlora-cluster-gsm8k-v2

This model is a fine-tuned version of microsoft/phi-1_5 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9003

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.0468 1.0 233 1.1314
0.9635 2.0 467 1.1069
0.9293 3.0 701 1.1129
0.8905 4.0 935 1.1269
0.8478 5.0 1168 1.1509
0.7686 6.0 1402 1.1727
0.7125 7.0 1636 1.2254
0.6637 8.0 1870 1.2571
0.6155 9.0 2103 1.3230
0.574 10.0 2337 1.3985
0.5273 11.0 2571 1.4532
0.451 12.0 2805 1.5160
0.4102 13.0 3038 1.5888
0.3802 14.0 3272 1.6469
0.3586 15.0 3506 1.6916
0.3391 16.0 3740 1.7576
0.3194 17.0 3973 1.7898
0.293 18.0 4207 1.8284
0.2815 19.0 4441 1.8460
0.2739 20.0 4675 1.8681
0.2693 21.0 4908 1.8821
0.2646 22.0 5142 1.8908
0.2614 23.0 5376 1.8954
0.2577 24.0 5610 1.8993
0.2566 24.92 5825 1.9003

Framework versions

  • PEFT 0.11.1
  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1