Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- tapex
|
5 |
+
- table-question-answering
|
6 |
+
license: apache-2.0
|
7 |
+
datasets:
|
8 |
+
- wtq
|
9 |
+
inference: false
|
10 |
+
---
|
11 |
+
|
12 |
+
TAPEX-large model fine-tuned on SQA. This model was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. Original repo can be found [here](https://github.com/microsoft/Table-Pretraining).
|
13 |
+
|
14 |
+
To load it and run inference, you can do the following:
|
15 |
+
|
16 |
+
```
|
17 |
+
from transformers import BartTokenizer, BartForConditionalGeneration
|
18 |
+
import pandas as pd
|
19 |
+
|
20 |
+
tokenizer = BartTokenizer.from_pretrained("nielsr/tapex-large-finetuned-sqa")
|
21 |
+
model = BartForConditionalGeneration.from_pretrained("nielsr/tapex-large-finetuned-sqa")
|
22 |
+
|
23 |
+
# create table
|
24 |
+
data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Number of movies': ["87", "53", "69"]}
|
25 |
+
table = pd.DataFrame.from_dict(data)
|
26 |
+
|
27 |
+
# turn into dict
|
28 |
+
table_dict = {"header": list(table.columns), "rows": [list(row.values) for i,row in table.iterrows()]}
|
29 |
+
|
30 |
+
# turn into format TAPEX expects
|
31 |
+
# define the linearizer based on this code: https://github.com/microsoft/Table-Pretraining/blob/main/tapex/processor/table_linearize.py
|
32 |
+
linearizer = IndexedRowTableLinearize()
|
33 |
+
linear_table = linearizer.process_table(table_dict)
|
34 |
+
|
35 |
+
# add question
|
36 |
+
question = "how many movies does George Clooney have?"
|
37 |
+
joint_input = question + " " + linear_table
|
38 |
+
|
39 |
+
# encode
|
40 |
+
encoding = tokenizer(joint_input, return_tensors="pt")
|
41 |
+
|
42 |
+
# forward pass
|
43 |
+
outputs = model.generate(**encoding)
|
44 |
+
|
45 |
+
# decode
|
46 |
+
tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
47 |
+
```
|