nickprock's picture
Update README.md
36a5a02 verified
metadata
library_name: transformers
license: mit
base_model: DeepMount00/Italian-ModernBERT-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: modernbert-italian-finetuned-ner
    results: []
datasets:
  - tner/wikiann
language:
  - it
pipeline_tag: token-classification

modernbert-italian-finetuned-ner

This model is a fine-tuned version of DeepMount00/Italian-ModernBERT-base on tner/wikiann dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0422
  • Precision: 0.9339
  • Recall: 0.9452
  • F1: 0.9395
  • Accuracy: 0.9909

Model description

Token classification for italian language experiment, NER.

Example

from transformers import pipeline
ner_pipeline = pipeline("ner", model="nickprock/modernbert-italian-finetuned-ner", aggregation_strategy="simple")
text = "La sede storica della Olivetti è ad Ivrea"
output = ner_pipeline(text)

Intended uses & limitations

The model can be used on token classification, in particular NER. It is fine tuned on italian language.

Training and evaluation data

The dataset used is wikiann

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0277 1.0 11050 0.0324 0.9233 0.9362 0.9297 0.9899
0.0139 2.0 22100 0.0341 0.9327 0.9428 0.9377 0.9907
0.0052 3.0 33150 0.0422 0.9339 0.9452 0.9395 0.9909

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0