update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: fb-data2vec-finetuned-finance-classification
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# fb-data2vec-finetuned-finance-classification
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.8993
|
23 |
+
- Accuracy: 0.8557
|
24 |
+
- F1: 0.8563
|
25 |
+
- Precision: 0.8576
|
26 |
+
- Recall: 0.8557
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 15
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
58 |
+
| No log | 1.0 | 285 | 0.6704 | 0.6680 | 0.6262 | 0.7919 | 0.6680 |
|
59 |
+
| 0.6626 | 2.0 | 570 | 0.4731 | 0.8360 | 0.8350 | 0.8346 | 0.8360 |
|
60 |
+
| 0.6626 | 3.0 | 855 | 0.4598 | 0.8458 | 0.8454 | 0.8452 | 0.8458 |
|
61 |
+
| 0.3666 | 4.0 | 1140 | 0.4758 | 0.8360 | 0.8352 | 0.8353 | 0.8360 |
|
62 |
+
| 0.3666 | 5.0 | 1425 | 0.5683 | 0.8340 | 0.8342 | 0.8353 | 0.8340 |
|
63 |
+
| 0.2316 | 6.0 | 1710 | 0.6234 | 0.8419 | 0.8421 | 0.8447 | 0.8419 |
|
64 |
+
| 0.2316 | 7.0 | 1995 | 0.7186 | 0.8379 | 0.8385 | 0.8395 | 0.8379 |
|
65 |
+
| 0.1523 | 8.0 | 2280 | 0.7268 | 0.8439 | 0.8442 | 0.8455 | 0.8439 |
|
66 |
+
| 0.0928 | 9.0 | 2565 | 0.7364 | 0.8439 | 0.8452 | 0.8494 | 0.8439 |
|
67 |
+
| 0.0928 | 10.0 | 2850 | 0.7975 | 0.8478 | 0.8476 | 0.8476 | 0.8478 |
|
68 |
+
| 0.054 | 11.0 | 3135 | 0.9019 | 0.8498 | 0.8509 | 0.8554 | 0.8498 |
|
69 |
+
| 0.054 | 12.0 | 3420 | 0.8779 | 0.8538 | 0.8548 | 0.8578 | 0.8538 |
|
70 |
+
| 0.036 | 13.0 | 3705 | 0.8914 | 0.8617 | 0.8626 | 0.8652 | 0.8617 |
|
71 |
+
| 0.036 | 14.0 | 3990 | 0.8976 | 0.8538 | 0.8547 | 0.8572 | 0.8538 |
|
72 |
+
| 0.0232 | 15.0 | 4275 | 0.8993 | 0.8557 | 0.8563 | 0.8576 | 0.8557 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.18.0
|
78 |
+
- Pytorch 1.11.0+cu113
|
79 |
+
- Datasets 2.1.0
|
80 |
+
- Tokenizers 0.12.1
|