|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- christykoh/imdb_pt |
|
language: |
|
- pt |
|
metrics: |
|
- accuracy |
|
library_name: transformers |
|
pipeline_tag: text-classification |
|
tags: |
|
- sentiment-analysis |
|
widget: |
|
- text: "Esqueceram de mim 2 é um dos melhores filmes de natal de todos os tempos." |
|
example_title: Exemplo |
|
- text: "Esqueceram de mim 2 é o pior filme da franquia inteira." |
|
example_title: Exemplo |
|
--- |
|
# TeenyTinyLlama-460m-IMDB |
|
|
|
TeenyTinyLlama is a pair of small foundational models trained in Brazilian Portuguese. |
|
|
|
This repository contains a version of [TeenyTinyLlama-460m](https://huggingface.co/nicholasKluge/TeenyTinyLlama-460m) (`TeenyTinyLlama-460m-IMDB`) fine-tuned on the the [IMDB dataset](https://huggingface.co/datasets/christykoh/imdb_pt). |
|
|
|
## Details |
|
|
|
- **Number of Epochs:** 3 |
|
- **Batch size:** 16 |
|
- **Optimizer:** `torch.optim.AdamW` (learning_rate = 4e-5, epsilon = 1e-8) |
|
- **GPU:** 1 NVIDIA A100-SXM4-40GB |
|
|
|
## Usage |
|
|
|
Using `transformers.pipeline`: |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
text = "Esqueceram de mim 2 é um dos melhores filmes de natal de todos os tempos." |
|
|
|
classifier = pipeline("text-classification", model="nicholasKluge/TeenyTinyLlama-460m-IMDB") |
|
classifier(text) |
|
|
|
# >>> [{'label': 'POSITIVE', 'score': 0.9971244931221008}] |
|
``` |
|
|
|
## Reproducing |
|
|
|
To reproduce the fine-tuning process, use the following code snippet: |
|
|
|
```python |
|
# IMDB |
|
! pip install transformers datasets evaluate accelerate -q |
|
|
|
import evaluate |
|
import numpy as np |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer, DataCollatorWithPadding |
|
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer |
|
|
|
# Load the task |
|
dataset = load_dataset("christykoh/imdb_pt") |
|
|
|
# Create a `ModelForSequenceClassification` |
|
model = AutoModelForSequenceClassification.from_pretrained( |
|
"nicholasKluge/TeenyTinyLlama-460m", |
|
num_labels=2, |
|
id2label={0: "NEGATIVE", 1: "POSITIVE"}, |
|
label2id={"NEGATIVE": 0, "POSITIVE": 1} |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("nicholasKluge/TeenyTinyLlama-460m") |
|
|
|
# Preprocess the dataset |
|
def preprocess_function(examples): |
|
return tokenizer(examples["text"], truncation=True, max_length=256) |
|
|
|
dataset_tokenized = dataset.map(preprocess_function, batched=True) |
|
|
|
# Create a simple data collactor |
|
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) |
|
|
|
# Use accuracy as an evaluation metric |
|
accuracy = evaluate.load("accuracy") |
|
|
|
# Function to compute accuracy |
|
def compute_metrics(eval_pred): |
|
predictions, labels = eval_pred |
|
predictions = np.argmax(predictions, axis=1) |
|
return accuracy.compute(predictions=predictions, references=labels) |
|
|
|
# Define training arguments |
|
training_args = TrainingArguments( |
|
output_dir="checkpoints", |
|
learning_rate=4e-5, |
|
per_device_train_batch_size=16, |
|
per_device_eval_batch_size=16, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
evaluation_strategy="epoch", |
|
save_strategy="epoch", |
|
load_best_model_at_end=True, |
|
push_to_hub=True, |
|
hub_token="your_token_here", |
|
hub_model_id="username/model-name-imdb" |
|
) |
|
|
|
# Define the Trainer |
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=dataset_tokenized["train"], |
|
eval_dataset=dataset_tokenized["test"], |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
compute_metrics=compute_metrics, |
|
) |
|
|
|
# Train! |
|
trainer.train() |
|
``` |
|
|
|
## Fine-Tuning Comparisons |
|
|
|
To further evaluate the downstream capabilities of our models, we decided to employ a basic fine-tuning procedure for our TTL pair on a subset of tasks from the Poeta benchmark. We apply the same procedure for comparison purposes on both [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) models, given that they are also LLM trained from scratch in Brazilian Portuguese and have a similar size range to our models. We used these comparisons to assess if our pre-training runs produced LLM capable of producing good results ("good" here means "close to BERTimbau") when utilized for downstream applications. |
|
|
|
| Models | IMDB | FaQuAD-NLI | HateBr | Assin2 | AgNews | Average | |
|
|-----------------|-----------|------------|-----------|-----------|-----------|---------| |
|
| BERTimbau-large | **93.58** | 92.26 | 91.57 | **88.97** | 94.11 | 92.10 | |
|
| BERTimbau-small | 92.22 | **93.07** | 91.28 | 87.45 | 94.19 | 91.64 | |
|
| **TTL-460m** | 91.64 | 91.18 | **92.28** | 86.43 | **94.42** | 91.19 | |
|
| **TTL-160m** | 91.14 | 90.00 | 90.71 | 85.78 | 94.05 | 90.34 | |
|
|
|
All the shown results are the higher accuracy scores achieved on the respective task test sets after fine-tuning the models on the training sets. All fine-tuning runs used the same hyperparameters, and the code implementation can be found in the [model cards](https://huggingface.co/nicholasKluge/TeenyTinyLlama-460m-HateBR) of our fine-tuned models. |
|
|
|
## Cite as 🤗 |
|
|
|
```latex |
|
|
|
@misc{correa24ttllama, |
|
title = {TeenyTinyLlama: open-source tiny language models trained in Brazilian Portuguese}, |
|
author = {Corr{\^e}a, Nicholas Kluge and Falk, Sophia and Fatimah, Shiza and Sen, Aniket and De Oliveira, Nythamar}, |
|
journal={arXiv preprint arXiv:2401.16640}, |
|
year={2024} |
|
} |
|
|
|
``` |
|
|
|
## Funding |
|
|
|
This repository was built as part of the RAIES ([Rede de Inteligência Artificial Ética e Segura](https://www.raies.org/)) initiative, a project supported by FAPERGS - ([Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul](https://fapergs.rs.gov.br/inicial)), Brazil. |
|
|
|
## License |
|
|
|
TeenyTinyLlama-460m-IMDB is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details. |
|
|