nhankins's picture
nhankins/en_euph_classifier_1.0
41c69d4 verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
model-index:
  - name: distilbert-base-uncased-lora-text-classification
    results: []

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3834
  • Precision: 0.8310
  • Recall: 0.8708
  • F1 and accuracy: {'accuracy': 0.7877237851662404, 'f1': 0.8504504504504504}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 and accuracy
No log 1.0 391 0.5803 0.7346 0.9705 {'accuracy': 0.7365728900255755, 'f1': 0.836248012718601}
0.5606 2.0 782 0.5085 0.8259 0.8229 {'accuracy': 0.7570332480818415, 'f1': 0.8243992606284658}
0.4687 3.0 1173 0.6925 0.8007 0.8745 {'accuracy': 0.7621483375959079, 'f1': 0.8359788359788359}
0.3603 4.0 1564 0.8182 0.7955 0.9188 {'accuracy': 0.7800511508951407, 'f1': 0.8527397260273973}
0.3603 5.0 1955 0.8375 0.8413 0.8413 {'accuracy': 0.7800511508951407, 'f1': 0.8413284132841329}
0.2736 6.0 2346 1.0186 0.8235 0.8782 {'accuracy': 0.7851662404092071, 'f1': 0.8500000000000001}
0.1993 7.0 2737 1.1566 0.8224 0.9225 {'accuracy': 0.8081841432225064, 'f1': 0.8695652173913043}
0.1491 8.0 3128 1.2136 0.8502 0.8376 {'accuracy': 0.7851662404092071, 'f1': 0.8438661710037174}
0.1224 9.0 3519 1.3815 0.8231 0.8930 {'accuracy': 0.7928388746803069, 'f1': 0.8566371681415929}
0.1224 10.0 3910 1.3834 0.8310 0.8708 {'accuracy': 0.7877237851662404, 'f1': 0.8504504504504504}

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1