nguyennghia0902 commited on
Commit
cdb1312
1 Parent(s): 87cc063

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -24
README.md CHANGED
@@ -6,6 +6,9 @@ tags:
6
  model-index:
7
  - name: nguyennghia0902/electra-small-discriminator_0.0005_32
8
  results: []
 
 
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
@@ -13,7 +16,7 @@ probably proofread and complete it, then remove this comment. -->
13
 
14
  # nguyennghia0902/electra-small-discriminator_0.0005_32
15
 
16
- This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
  - Train Loss: 0.9748
19
  - Train End Logits Accuracy: 0.7441
@@ -21,25 +24,18 @@ It achieves the following results on the evaluation set:
21
  - Validation Loss: 0.5570
22
  - Validation End Logits Accuracy: 0.8476
23
  - Validation Start Logits Accuracy: 0.8405
24
- - Epoch: 9
 
 
25
 
26
- ## Model description
27
-
28
- More information needed
29
-
30
- ## Intended uses & limitations
31
-
32
- More information needed
33
-
34
- ## Training and evaluation data
35
-
36
- More information needed
37
 
38
  ## Training procedure
39
 
40
  ### Training hyperparameters
41
 
42
  The following hyperparameters were used during training:
 
 
43
  - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 15630, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
44
  - training_precision: float32
45
 
@@ -47,16 +43,16 @@ The following hyperparameters were used during training:
47
 
48
  | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
49
  |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
50
- | 3.4201 | 0.2553 | 0.2310 | 2.6430 | 0.3942 | 0.3704 | 0 |
51
- | 2.7588 | 0.3762 | 0.3462 | 2.2758 | 0.4660 | 0.4482 | 1 |
52
- | 2.4695 | 0.4323 | 0.3983 | 2.0056 | 0.5211 | 0.5006 | 2 |
53
- | 2.2478 | 0.4745 | 0.4407 | 1.7412 | 0.5763 | 0.5595 | 3 |
54
- | 2.0321 | 0.5186 | 0.4864 | 1.5126 | 0.6289 | 0.6095 | 4 |
55
- | 1.8186 | 0.5614 | 0.5319 | 1.2839 | 0.6719 | 0.6647 | 5 |
56
- | 1.6012 | 0.6060 | 0.5760 | 1.0431 | 0.7322 | 0.7264 | 6 |
57
- | 1.3677 | 0.6561 | 0.6257 | 0.8193 | 0.7857 | 0.7770 | 7 |
58
- | 1.1450 | 0.7023 | 0.6765 | 0.6373 | 0.8275 | 0.8215 | 8 |
59
- | 0.9748 | 0.7441 | 0.7181 | 0.5570 | 0.8476 | 0.8405 | 9 |
60
 
61
 
62
  ### Framework versions
@@ -64,4 +60,4 @@ The following hyperparameters were used during training:
64
  - Transformers 4.39.3
65
  - TensorFlow 2.15.0
66
  - Datasets 2.18.0
67
- - Tokenizers 0.15.2
 
6
  model-index:
7
  - name: nguyennghia0902/electra-small-discriminator_0.0005_32
8
  results: []
9
+ language:
10
+ - vi
11
+ pipeline_tag: question-answering
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
 
16
 
17
  # nguyennghia0902/electra-small-discriminator_0.0005_32
18
 
19
+ This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on [Vietnamese dataset](https://www.kaggle.com/datasets/duyminhnguyentran/csc15105).
20
  It achieves the following results on the evaluation set:
21
  - Train Loss: 0.9748
22
  - Train End Logits Accuracy: 0.7441
 
24
  - Validation Loss: 0.5570
25
  - Validation End Logits Accuracy: 0.8476
26
  - Validation Start Logits Accuracy: 0.8405
27
+ - Validation Matching Accuracy: 0.7642
28
+ - Epoch: 10
29
+ - Time train: 13988,2740111351 seconds ~ 3,8855 hours
30
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  ## Training procedure
33
 
34
  ### Training hyperparameters
35
 
36
  The following hyperparameters were used during training:
37
+ - Learning rate: 5e-4
38
+ - Batch size: 32
39
  - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 15630, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
40
  - training_precision: float32
41
 
 
43
 
44
  | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
45
  |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
46
+ | 3.4201 | 0.2553 | 0.2310 | 2.6430 | 0.3942 | 0.3704 | 1 |
47
+ | 2.7588 | 0.3762 | 0.3462 | 2.2758 | 0.4660 | 0.4482 | 2 |
48
+ | 2.4695 | 0.4323 | 0.3983 | 2.0056 | 0.5211 | 0.5006 | 3 |
49
+ | 2.2478 | 0.4745 | 0.4407 | 1.7412 | 0.5763 | 0.5595 | 4 |
50
+ | 2.0321 | 0.5186 | 0.4864 | 1.5126 | 0.6289 | 0.6095 | 5 |
51
+ | 1.8186 | 0.5614 | 0.5319 | 1.2839 | 0.6719 | 0.6647 | 6 |
52
+ | 1.6012 | 0.6060 | 0.5760 | 1.0431 | 0.7322 | 0.7264 | 7 |
53
+ | 1.3677 | 0.6561 | 0.6257 | 0.8193 | 0.7857 | 0.7770 | 8 |
54
+ | 1.1450 | 0.7023 | 0.6765 | 0.6373 | 0.8275 | 0.8215 | 9 |
55
+ | 0.9748 | 0.7441 | 0.7181 | 0.5570 | 0.8476 | 0.8405 | 10 |
56
 
57
 
58
  ### Framework versions
 
60
  - Transformers 4.39.3
61
  - TensorFlow 2.15.0
62
  - Datasets 2.18.0
63
+ - Tokenizers 0.15.2