whisper-small-wo / README.md
ngia's picture
End of training
bb9c9c1 verified
metadata
library_name: transformers
language:
  - fr
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - IndabaxSenegal/asr-wolof-dataset
metrics:
  - wer
model-index:
  - name: Whisper Small WO - Team
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: ASR Wolof Dataset
          type: IndabaxSenegal/asr-wolof-dataset
          args: 'config: wo, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 78.44373118690858

Whisper Small WO - Team

This model is a fine-tuned version of openai/whisper-small on the ASR Wolof Dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1726
  • Wer: 78.4437

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0965 1.5408 1000 0.1751 83.2067
0.0406 3.0817 2000 0.1761 78.6749
0.0192 4.6225 3000 0.1772 78.8612
0.0037 6.1633 4000 0.1726 78.4437

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.0