|
--- |
|
base_model: sentence-transformers/paraphrase-mpnet-base-v2 |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: I'm encountering errors with a pod in the "kube-public" namespace. Any suggestions |
|
on how to debug it? |
|
- text: Can you check sandbox-1 for problems? |
|
- text: I need permissions for the prod-aws account to troubleshoot an issue. |
|
- text: Can you tell me about your hobbies? |
|
- text: How can I reduce stress? |
|
inference: true |
|
model-index: |
|
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.9961538461538462 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 5 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| NONE | <ul><li>'How do I learn to play the guitar?'</li><li>"What's the longest river in the world?"</li><li>'How do I overcome procrastination?'</li></ul> | |
|
| KUBIE | <ul><li>'What logs should I check to identify container crashes in the qa-soc-svcs namespace?'</li><li>'Can you suggest ways to troubleshoot an image pull error in the "kube-public" namespace?'</li><li>"I'm encountering errors with a pod in the sandbox-6 namespace. Any suggestions on how to debug it?"</li></ul> | |
|
| aws_iam | <ul><li>'Show me the IAM role details including attached policies.'</li><li>'Show me the IAM roles that have the "admin" prefix.'</li><li>'How can I get detailed information about a particular IAM role?'</li></ul> | |
|
| DOC | <ul><li>'How to access ArgoCD on Production?'</li><li>'How to run terraform in CDO?'</li><li>'How to push images to dockerhub.cisco.com?'</li></ul> | |
|
| access_management | <ul><li>'Access to prod-aws infrastructure is required urgently for a deployment.'</li><li>'Could you provide me access to the dev-aws resources?'</li><li>'I require access to the prod-sagemaker instance for machine learning experiments.'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.9962 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("setfit_model_id") |
|
# Run inference |
|
preds = model("How can I reduce stress?") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 1 | 8.5408 | 17 | |
|
|
|
| Label | Training Sample Count | |
|
|:------------------|:----------------------| |
|
| aws_iam | 20 | |
|
| access_management | 20 | |
|
| DOC | 18 | |
|
| KUBIE | 20 | |
|
| NONE | 20 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (4, 4) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:-------:|:-------------:|:---------------:| |
|
| 0.0021 | 1 | 0.2675 | - | |
|
| 0.1042 | 50 | 0.1143 | - | |
|
| 0.2083 | 100 | 0.0578 | - | |
|
| 0.3125 | 150 | 0.0028 | - | |
|
| 0.4167 | 200 | 0.0032 | - | |
|
| 0.5208 | 250 | 0.0007 | - | |
|
| 0.625 | 300 | 0.0006 | - | |
|
| 0.7292 | 350 | 0.0004 | - | |
|
| 0.8333 | 400 | 0.0005 | - | |
|
| 0.9375 | 450 | 0.0006 | - | |
|
| **1.0** | **480** | **-** | **0.0027** | |
|
| 1.0417 | 500 | 0.0004 | - | |
|
| 1.1458 | 550 | 0.0002 | - | |
|
| 1.25 | 600 | 0.0003 | - | |
|
| 1.3542 | 650 | 0.0002 | - | |
|
| 1.4583 | 700 | 0.0002 | - | |
|
| 1.5625 | 750 | 0.0002 | - | |
|
| 1.6667 | 800 | 0.0002 | - | |
|
| 1.7708 | 850 | 0.0002 | - | |
|
| 1.875 | 900 | 0.0002 | - | |
|
| 1.9792 | 950 | 0.0001 | - | |
|
| 2.0 | 960 | - | 0.0032 | |
|
| 2.0833 | 1000 | 0.0001 | - | |
|
| 2.1875 | 1050 | 0.0002 | - | |
|
| 2.2917 | 1100 | 0.0001 | - | |
|
| 2.3958 | 1150 | 0.0002 | - | |
|
| 2.5 | 1200 | 0.0002 | - | |
|
| 2.6042 | 1250 | 0.0001 | - | |
|
| 2.7083 | 1300 | 0.0002 | - | |
|
| 2.8125 | 1350 | 0.0001 | - | |
|
| 2.9167 | 1400 | 0.0001 | - | |
|
| 3.0 | 1440 | - | 0.004 | |
|
| 3.0208 | 1450 | 0.0001 | - | |
|
| 3.125 | 1500 | 0.0001 | - | |
|
| 3.2292 | 1550 | 0.0002 | - | |
|
| 3.3333 | 1600 | 0.0002 | - | |
|
| 3.4375 | 1650 | 0.0001 | - | |
|
| 3.5417 | 1700 | 0.0002 | - | |
|
| 3.6458 | 1750 | 0.0001 | - | |
|
| 3.75 | 1800 | 0.0001 | - | |
|
| 3.8542 | 1850 | 0.0001 | - | |
|
| 3.9583 | 1900 | 0.0002 | - | |
|
| 4.0 | 1920 | - | 0.0037 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
### Framework Versions |
|
- Python: 3.9.6 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 2.7.0 |
|
- Transformers: 4.40.1 |
|
- PyTorch: 2.1.2 |
|
- Datasets: 2.19.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |