nfliu's picture
Add usage example
4031700
metadata
license: mit
base_model: microsoft/deberta-v3-large
tags:
  - generated_from_trainer
datasets:
  - boolq
metrics:
  - accuracy
model-index:
  - name: deberta-v3-large_boolq
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: boolq
          type: boolq
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8834862385321101

deberta-v3-large_boolq

This model is a fine-tuned version of microsoft/deberta-v3-large on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4601
  • Accuracy: 0.8835

Model description

More information needed

Example

import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("nfliu/deberta-v3-large_boolq")
tokenizer = AutoTokenizer.from_pretrained("nfliu/deberta-v3-large_boolq")

# Each example is a (question, context) pair.
examples = [
    ("Lake Tahoe is in California", "Lake Tahoe is a popular tourist spot in California."),
    ("Water is wet", "Contrary to popular belief, water is not wet.")
]

encoded_input = tokenizer(examples, padding=True, truncation=True, return_tensors="pt")

with torch.no_grad():
    model_output = model(**encoded_input)
    probabilities = torch.softmax(model_output.logits, dim=-1).cpu().tolist()

probability_no = [round(prob[0], 2) for prob in probabilities]
probability_yes = [round(prob[1], 2) for prob in probabilities]

for example, p_no, p_yes in zip(examples, probability_no, probability_yes):
    print(f"Question: {example[0]}")
    print(f"Context: {example[1]}")
    print(f"p(No | question, context): {p_no}")
    print(f"p(Yes | question, context): {p_yes}")
    print()

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.85 250 0.5306 0.8823
0.1151 1.69 500 0.4601 0.8835
0.1151 2.54 750 0.5897 0.8792
0.0656 3.39 1000 0.6477 0.8804
0.0656 4.24 1250 0.6847 0.8838

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3