|
--- |
|
language: |
|
- id |
|
tags: |
|
- indobert |
|
- indobenchmark |
|
- indonlu |
|
--- |
|
This is the first classification of sentiment analysis for police new task |
|
|
|
### How to import |
|
```python |
|
import torch |
|
from transformers import BertForSequenceClassification, BertTokenizer, BertConfig, pipeline |
|
|
|
# Load the tokenizer and model |
|
tokenizer = BertTokenizer.from_pretrained("nfhakim/police-sentiment-c1-v2") |
|
config = BertConfig.from_pretrained("nfhakim/police-sentiment-c1-v2") |
|
model = BertForSequenceClassification.from_pretrained("nfhakim/police-sentiment-c1-v2", config=config) |
|
``` |
|
|
|
### How to use |
|
```python |
|
# Initialize the pipeline |
|
nlp = pipeline("text-classification", model=model, tokenizer=tokenizer) |
|
|
|
# Define a function to handle input text |
|
def classify_text(text): |
|
# Tokenize the text and truncate to the first 512 tokens if necessary |
|
inputs = tokenizer(text, truncation=True, max_length=512, return_tensors="pt") |
|
|
|
# Use the model to classify the text |
|
results = nlp(inputs['input_ids']) |
|
return results |
|
|
|
# Example usage |
|
input_text = "Your input text here" |
|
output = classify_text(input_text) |
|
print(output) |
|
|
|
``` |