Update README.md
Browse files
README.md
CHANGED
@@ -50,6 +50,62 @@ model-index:
|
|
50 |
value: 45.494
|
51 |
- type: f1
|
52 |
value: 44.917953161904805
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
- task:
|
54 |
type: Classification
|
55 |
dataset:
|
@@ -63,6 +119,28 @@ model-index:
|
|
63 |
value: 84.29545454545455
|
64 |
- type: f1
|
65 |
value: 84.26780483160312
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
- task:
|
67 |
type: Classification
|
68 |
dataset:
|
@@ -143,6 +221,342 @@ model-index:
|
|
143 |
value: 77.5353059852051
|
144 |
- type: f1
|
145 |
value: 77.42427561340143
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
- task:
|
147 |
type: Classification
|
148 |
dataset:
|
@@ -171,6 +585,127 @@ model-index:
|
|
171 |
value: 59.49349179400113
|
172 |
- type: f1
|
173 |
value: 59.815392064510775
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
---
|
175 |
This is the sparsified ONNX variant of the [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) embeddings model created with [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) for ONNX export/inference pipeline and Neural Magic's [Sparsify](https://github.com/neuralmagic/sparsify) for one-shot quantization (INT8) and unstructured pruning (50%).
|
176 |
|
|
|
50 |
value: 45.494
|
51 |
- type: f1
|
52 |
value: 44.917953161904805
|
53 |
+
- task:
|
54 |
+
type: Clustering
|
55 |
+
dataset:
|
56 |
+
type: mteb/arxiv-clustering-p2p
|
57 |
+
name: MTEB ArxivClusteringP2P
|
58 |
+
config: default
|
59 |
+
split: test
|
60 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
61 |
+
metrics:
|
62 |
+
- type: v_measure
|
63 |
+
value: 46.50495921726095
|
64 |
+
- task:
|
65 |
+
type: Clustering
|
66 |
+
dataset:
|
67 |
+
type: mteb/arxiv-clustering-s2s
|
68 |
+
name: MTEB ArxivClusteringS2S
|
69 |
+
config: default
|
70 |
+
split: test
|
71 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
72 |
+
metrics:
|
73 |
+
- type: v_measure
|
74 |
+
value: 40.080055890804836
|
75 |
+
- task:
|
76 |
+
type: Reranking
|
77 |
+
dataset:
|
78 |
+
type: mteb/askubuntudupquestions-reranking
|
79 |
+
name: MTEB AskUbuntuDupQuestions
|
80 |
+
config: default
|
81 |
+
split: test
|
82 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
83 |
+
metrics:
|
84 |
+
- type: map
|
85 |
+
value: 60.22880715757138
|
86 |
+
- type: mrr
|
87 |
+
value: 73.11227630479708
|
88 |
+
- task:
|
89 |
+
type: STS
|
90 |
+
dataset:
|
91 |
+
type: mteb/biosses-sts
|
92 |
+
name: MTEB BIOSSES
|
93 |
+
config: default
|
94 |
+
split: test
|
95 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
96 |
+
metrics:
|
97 |
+
- type: cos_sim_pearson
|
98 |
+
value: 86.9542549153515
|
99 |
+
- type: cos_sim_spearman
|
100 |
+
value: 83.93865958725257
|
101 |
+
- type: euclidean_pearson
|
102 |
+
value: 86.00372707912037
|
103 |
+
- type: euclidean_spearman
|
104 |
+
value: 84.97302050526537
|
105 |
+
- type: manhattan_pearson
|
106 |
+
value: 85.63207676453459
|
107 |
+
- type: manhattan_spearman
|
108 |
+
value: 84.82542678079645
|
109 |
- task:
|
110 |
type: Classification
|
111 |
dataset:
|
|
|
119 |
value: 84.29545454545455
|
120 |
- type: f1
|
121 |
value: 84.26780483160312
|
122 |
+
- task:
|
123 |
+
type: Clustering
|
124 |
+
dataset:
|
125 |
+
type: mteb/biorxiv-clustering-p2p
|
126 |
+
name: MTEB BiorxivClusteringP2P
|
127 |
+
config: default
|
128 |
+
split: test
|
129 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
130 |
+
metrics:
|
131 |
+
- type: v_measure
|
132 |
+
value: 36.78678386185847
|
133 |
+
- task:
|
134 |
+
type: Clustering
|
135 |
+
dataset:
|
136 |
+
type: mteb/biorxiv-clustering-s2s
|
137 |
+
name: MTEB BiorxivClusteringS2S
|
138 |
+
config: default
|
139 |
+
split: test
|
140 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
141 |
+
metrics:
|
142 |
+
- type: v_measure
|
143 |
+
value: 34.42462869304013
|
144 |
- task:
|
145 |
type: Classification
|
146 |
dataset:
|
|
|
221 |
value: 77.5353059852051
|
222 |
- type: f1
|
223 |
value: 77.42427561340143
|
224 |
+
- task:
|
225 |
+
type: Clustering
|
226 |
+
dataset:
|
227 |
+
type: mteb/medrxiv-clustering-p2p
|
228 |
+
name: MTEB MedrxivClusteringP2P
|
229 |
+
config: default
|
230 |
+
split: test
|
231 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
232 |
+
metrics:
|
233 |
+
- type: v_measure
|
234 |
+
value: 32.00163251745748
|
235 |
+
- task:
|
236 |
+
type: Clustering
|
237 |
+
dataset:
|
238 |
+
type: mteb/medrxiv-clustering-s2s
|
239 |
+
name: MTEB MedrxivClusteringS2S
|
240 |
+
config: default
|
241 |
+
split: test
|
242 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
243 |
+
metrics:
|
244 |
+
- type: v_measure
|
245 |
+
value: 30.37879992380756
|
246 |
+
- task:
|
247 |
+
type: Clustering
|
248 |
+
dataset:
|
249 |
+
type: mteb/reddit-clustering
|
250 |
+
name: MTEB RedditClustering
|
251 |
+
config: default
|
252 |
+
split: test
|
253 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
254 |
+
metrics:
|
255 |
+
- type: v_measure
|
256 |
+
value: 50.99679402527969
|
257 |
+
- task:
|
258 |
+
type: Clustering
|
259 |
+
dataset:
|
260 |
+
type: mteb/reddit-clustering-p2p
|
261 |
+
name: MTEB RedditClusteringP2P
|
262 |
+
config: default
|
263 |
+
split: test
|
264 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
265 |
+
metrics:
|
266 |
+
- type: v_measure
|
267 |
+
value: 59.28024721612242
|
268 |
+
- task:
|
269 |
+
type: STS
|
270 |
+
dataset:
|
271 |
+
type: mteb/sickr-sts
|
272 |
+
name: MTEB SICK-R
|
273 |
+
config: default
|
274 |
+
split: test
|
275 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
276 |
+
metrics:
|
277 |
+
- type: cos_sim_pearson
|
278 |
+
value: 84.54645068673153
|
279 |
+
- type: cos_sim_spearman
|
280 |
+
value: 78.64401947043316
|
281 |
+
- type: euclidean_pearson
|
282 |
+
value: 82.36873285307261
|
283 |
+
- type: euclidean_spearman
|
284 |
+
value: 78.57406974337181
|
285 |
+
- type: manhattan_pearson
|
286 |
+
value: 82.33000263843067
|
287 |
+
- type: manhattan_spearman
|
288 |
+
value: 78.51127629983256
|
289 |
+
- task:
|
290 |
+
type: STS
|
291 |
+
dataset:
|
292 |
+
type: mteb/sts12-sts
|
293 |
+
name: MTEB STS12
|
294 |
+
config: default
|
295 |
+
split: test
|
296 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
297 |
+
metrics:
|
298 |
+
- type: cos_sim_pearson
|
299 |
+
value: 83.3001843293691
|
300 |
+
- type: cos_sim_spearman
|
301 |
+
value: 74.87989254109124
|
302 |
+
- type: euclidean_pearson
|
303 |
+
value: 80.88523322810525
|
304 |
+
- type: euclidean_spearman
|
305 |
+
value: 75.6469299496058
|
306 |
+
- type: manhattan_pearson
|
307 |
+
value: 80.8921104008781
|
308 |
+
- type: manhattan_spearman
|
309 |
+
value: 75.65942956132456
|
310 |
+
- task:
|
311 |
+
type: STS
|
312 |
+
dataset:
|
313 |
+
type: mteb/sts13-sts
|
314 |
+
name: MTEB STS13
|
315 |
+
config: default
|
316 |
+
split: test
|
317 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
318 |
+
metrics:
|
319 |
+
- type: cos_sim_pearson
|
320 |
+
value: 82.40319855455617
|
321 |
+
- type: cos_sim_spearman
|
322 |
+
value: 83.63807375781141
|
323 |
+
- type: euclidean_pearson
|
324 |
+
value: 83.28557187260904
|
325 |
+
- type: euclidean_spearman
|
326 |
+
value: 83.65223617817439
|
327 |
+
- type: manhattan_pearson
|
328 |
+
value: 83.30411918680012
|
329 |
+
- type: manhattan_spearman
|
330 |
+
value: 83.69204806663276
|
331 |
+
- task:
|
332 |
+
type: STS
|
333 |
+
dataset:
|
334 |
+
type: mteb/sts14-sts
|
335 |
+
name: MTEB STS14
|
336 |
+
config: default
|
337 |
+
split: test
|
338 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
339 |
+
metrics:
|
340 |
+
- type: cos_sim_pearson
|
341 |
+
value: 83.08942420708404
|
342 |
+
- type: cos_sim_spearman
|
343 |
+
value: 80.39991846857053
|
344 |
+
- type: euclidean_pearson
|
345 |
+
value: 82.68275416568997
|
346 |
+
- type: euclidean_spearman
|
347 |
+
value: 80.49626214786178
|
348 |
+
- type: manhattan_pearson
|
349 |
+
value: 82.62993414444689
|
350 |
+
- type: manhattan_spearman
|
351 |
+
value: 80.44148684748403
|
352 |
+
- task:
|
353 |
+
type: STS
|
354 |
+
dataset:
|
355 |
+
type: mteb/sts15-sts
|
356 |
+
name: MTEB STS15
|
357 |
+
config: default
|
358 |
+
split: test
|
359 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
360 |
+
metrics:
|
361 |
+
- type: cos_sim_pearson
|
362 |
+
value: 86.70365000096972
|
363 |
+
- type: cos_sim_spearman
|
364 |
+
value: 88.00515486253518
|
365 |
+
- type: euclidean_pearson
|
366 |
+
value: 87.65142168651604
|
367 |
+
- type: euclidean_spearman
|
368 |
+
value: 88.05834854642737
|
369 |
+
- type: manhattan_pearson
|
370 |
+
value: 87.59548659661925
|
371 |
+
- type: manhattan_spearman
|
372 |
+
value: 88.00573237576926
|
373 |
+
- task:
|
374 |
+
type: STS
|
375 |
+
dataset:
|
376 |
+
type: mteb/sts16-sts
|
377 |
+
name: MTEB STS16
|
378 |
+
config: default
|
379 |
+
split: test
|
380 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
381 |
+
metrics:
|
382 |
+
- type: cos_sim_pearson
|
383 |
+
value: 82.47886818876728
|
384 |
+
- type: cos_sim_spearman
|
385 |
+
value: 84.30874770680975
|
386 |
+
- type: euclidean_pearson
|
387 |
+
value: 83.74580951498133
|
388 |
+
- type: euclidean_spearman
|
389 |
+
value: 84.60595431454789
|
390 |
+
- type: manhattan_pearson
|
391 |
+
value: 83.74122023121615
|
392 |
+
- type: manhattan_spearman
|
393 |
+
value: 84.60549899361064
|
394 |
+
- task:
|
395 |
+
type: STS
|
396 |
+
dataset:
|
397 |
+
type: mteb/sts17-crosslingual-sts
|
398 |
+
name: MTEB STS17 (en-en)
|
399 |
+
config: en-en
|
400 |
+
split: test
|
401 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
402 |
+
metrics:
|
403 |
+
- type: cos_sim_pearson
|
404 |
+
value: 87.60257252565631
|
405 |
+
- type: cos_sim_spearman
|
406 |
+
value: 88.29577246271319
|
407 |
+
- type: euclidean_pearson
|
408 |
+
value: 88.25434138634807
|
409 |
+
- type: euclidean_spearman
|
410 |
+
value: 88.06678743723845
|
411 |
+
- type: manhattan_pearson
|
412 |
+
value: 88.3651048848073
|
413 |
+
- type: manhattan_spearman
|
414 |
+
value: 88.23688291108866
|
415 |
+
- task:
|
416 |
+
type: STS
|
417 |
+
dataset:
|
418 |
+
type: mteb/sts22-crosslingual-sts
|
419 |
+
name: MTEB STS22 (en)
|
420 |
+
config: en
|
421 |
+
split: test
|
422 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
423 |
+
metrics:
|
424 |
+
- type: cos_sim_pearson
|
425 |
+
value: 61.666254720687206
|
426 |
+
- type: cos_sim_spearman
|
427 |
+
value: 63.83700525419119
|
428 |
+
- type: euclidean_pearson
|
429 |
+
value: 64.36325040161177
|
430 |
+
- type: euclidean_spearman
|
431 |
+
value: 63.99833771224718
|
432 |
+
- type: manhattan_pearson
|
433 |
+
value: 64.01356576965371
|
434 |
+
- type: manhattan_spearman
|
435 |
+
value: 63.7201674202641
|
436 |
+
- task:
|
437 |
+
type: STS
|
438 |
+
dataset:
|
439 |
+
type: mteb/stsbenchmark-sts
|
440 |
+
name: MTEB STSBenchmark
|
441 |
+
config: default
|
442 |
+
split: test
|
443 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
444 |
+
metrics:
|
445 |
+
- type: cos_sim_pearson
|
446 |
+
value: 85.14584232139909
|
447 |
+
- type: cos_sim_spearman
|
448 |
+
value: 85.92570762612142
|
449 |
+
- type: euclidean_pearson
|
450 |
+
value: 86.34291503630607
|
451 |
+
- type: euclidean_spearman
|
452 |
+
value: 86.12670269109282
|
453 |
+
- type: manhattan_pearson
|
454 |
+
value: 86.26109450032494
|
455 |
+
- type: manhattan_spearman
|
456 |
+
value: 86.07665628498633
|
457 |
+
- task:
|
458 |
+
type: Reranking
|
459 |
+
dataset:
|
460 |
+
type: mteb/scidocs-reranking
|
461 |
+
name: MTEB SciDocsRR
|
462 |
+
config: default
|
463 |
+
split: test
|
464 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
465 |
+
metrics:
|
466 |
+
- type: map
|
467 |
+
value: 84.46430478723548
|
468 |
+
- type: mrr
|
469 |
+
value: 95.63907044299201
|
470 |
+
- task:
|
471 |
+
type: PairClassification
|
472 |
+
dataset:
|
473 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
474 |
+
name: MTEB SprintDuplicateQuestions
|
475 |
+
config: default
|
476 |
+
split: test
|
477 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
478 |
+
metrics:
|
479 |
+
- type: cos_sim_accuracy
|
480 |
+
value: 99.82178217821782
|
481 |
+
- type: cos_sim_ap
|
482 |
+
value: 95.49612561375889
|
483 |
+
- type: cos_sim_f1
|
484 |
+
value: 91.02691924227318
|
485 |
+
- type: cos_sim_precision
|
486 |
+
value: 90.75546719681908
|
487 |
+
- type: cos_sim_recall
|
488 |
+
value: 91.3
|
489 |
+
- type: dot_accuracy
|
490 |
+
value: 99.67821782178218
|
491 |
+
- type: dot_ap
|
492 |
+
value: 90.55740832326241
|
493 |
+
- type: dot_f1
|
494 |
+
value: 83.30765279917823
|
495 |
+
- type: dot_precision
|
496 |
+
value: 85.6388595564942
|
497 |
+
- type: dot_recall
|
498 |
+
value: 81.10000000000001
|
499 |
+
- type: euclidean_accuracy
|
500 |
+
value: 99.82475247524752
|
501 |
+
- type: euclidean_ap
|
502 |
+
value: 95.4739426775874
|
503 |
+
- type: euclidean_f1
|
504 |
+
value: 91.07413010590017
|
505 |
+
- type: euclidean_precision
|
506 |
+
value: 91.8616480162767
|
507 |
+
- type: euclidean_recall
|
508 |
+
value: 90.3
|
509 |
+
- type: manhattan_accuracy
|
510 |
+
value: 99.82376237623762
|
511 |
+
- type: manhattan_ap
|
512 |
+
value: 95.48506891694475
|
513 |
+
- type: manhattan_f1
|
514 |
+
value: 91.02822580645163
|
515 |
+
- type: manhattan_precision
|
516 |
+
value: 91.76829268292683
|
517 |
+
- type: manhattan_recall
|
518 |
+
value: 90.3
|
519 |
+
- type: max_accuracy
|
520 |
+
value: 99.82475247524752
|
521 |
+
- type: max_ap
|
522 |
+
value: 95.49612561375889
|
523 |
+
- type: max_f1
|
524 |
+
value: 91.07413010590017
|
525 |
+
- task:
|
526 |
+
type: Clustering
|
527 |
+
dataset:
|
528 |
+
type: mteb/stackexchange-clustering
|
529 |
+
name: MTEB StackExchangeClustering
|
530 |
+
config: default
|
531 |
+
split: test
|
532 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
533 |
+
metrics:
|
534 |
+
- type: v_measure
|
535 |
+
value: 60.92486258951404
|
536 |
+
- task:
|
537 |
+
type: Clustering
|
538 |
+
dataset:
|
539 |
+
type: mteb/stackexchange-clustering-p2p
|
540 |
+
name: MTEB StackExchangeClusteringP2P
|
541 |
+
config: default
|
542 |
+
split: test
|
543 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
544 |
+
metrics:
|
545 |
+
- type: v_measure
|
546 |
+
value: 32.97511013092965
|
547 |
+
- task:
|
548 |
+
type: Reranking
|
549 |
+
dataset:
|
550 |
+
type: mteb/stackoverflowdupquestions-reranking
|
551 |
+
name: MTEB StackOverflowDupQuestions
|
552 |
+
config: default
|
553 |
+
split: test
|
554 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
555 |
+
metrics:
|
556 |
+
- type: map
|
557 |
+
value: 52.31647363355174
|
558 |
+
- type: mrr
|
559 |
+
value: 53.26469792462439
|
560 |
- task:
|
561 |
type: Classification
|
562 |
dataset:
|
|
|
585 |
value: 59.49349179400113
|
586 |
- type: f1
|
587 |
value: 59.815392064510775
|
588 |
+
- task:
|
589 |
+
type: Clustering
|
590 |
+
dataset:
|
591 |
+
type: mteb/twentynewsgroups-clustering
|
592 |
+
name: MTEB TwentyNewsgroupsClustering
|
593 |
+
config: default
|
594 |
+
split: test
|
595 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
596 |
+
metrics:
|
597 |
+
- type: v_measure
|
598 |
+
value: 47.29662657485732
|
599 |
+
- task:
|
600 |
+
type: PairClassification
|
601 |
+
dataset:
|
602 |
+
type: mteb/twittersemeval2015-pairclassification
|
603 |
+
name: MTEB TwitterSemEval2015
|
604 |
+
config: default
|
605 |
+
split: test
|
606 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
607 |
+
metrics:
|
608 |
+
- type: cos_sim_accuracy
|
609 |
+
value: 85.74834594981225
|
610 |
+
- type: cos_sim_ap
|
611 |
+
value: 72.92449226447182
|
612 |
+
- type: cos_sim_f1
|
613 |
+
value: 68.14611644433363
|
614 |
+
- type: cos_sim_precision
|
615 |
+
value: 64.59465847317419
|
616 |
+
- type: cos_sim_recall
|
617 |
+
value: 72.1108179419525
|
618 |
+
- type: dot_accuracy
|
619 |
+
value: 82.73827263515527
|
620 |
+
- type: dot_ap
|
621 |
+
value: 63.27505594570806
|
622 |
+
- type: dot_f1
|
623 |
+
value: 61.717543651265
|
624 |
+
- type: dot_precision
|
625 |
+
value: 56.12443292287751
|
626 |
+
- type: dot_recall
|
627 |
+
value: 68.54881266490766
|
628 |
+
- type: euclidean_accuracy
|
629 |
+
value: 85.90332002145796
|
630 |
+
- type: euclidean_ap
|
631 |
+
value: 73.08299660990401
|
632 |
+
- type: euclidean_f1
|
633 |
+
value: 67.9050313691721
|
634 |
+
- type: euclidean_precision
|
635 |
+
value: 63.6091265268495
|
636 |
+
- type: euclidean_recall
|
637 |
+
value: 72.82321899736148
|
638 |
+
- type: manhattan_accuracy
|
639 |
+
value: 85.87351731537224
|
640 |
+
- type: manhattan_ap
|
641 |
+
value: 73.02205874497865
|
642 |
+
- type: manhattan_f1
|
643 |
+
value: 67.87532596547871
|
644 |
+
- type: manhattan_precision
|
645 |
+
value: 64.109781843772
|
646 |
+
- type: manhattan_recall
|
647 |
+
value: 72.1108179419525
|
648 |
+
- type: max_accuracy
|
649 |
+
value: 85.90332002145796
|
650 |
+
- type: max_ap
|
651 |
+
value: 73.08299660990401
|
652 |
+
- type: max_f1
|
653 |
+
value: 68.14611644433363
|
654 |
+
- task:
|
655 |
+
type: PairClassification
|
656 |
+
dataset:
|
657 |
+
type: mteb/twitterurlcorpus-pairclassification
|
658 |
+
name: MTEB TwitterURLCorpus
|
659 |
+
config: default
|
660 |
+
split: test
|
661 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
662 |
+
metrics:
|
663 |
+
- type: cos_sim_accuracy
|
664 |
+
value: 88.84231769317343
|
665 |
+
- type: cos_sim_ap
|
666 |
+
value: 85.65683184516553
|
667 |
+
- type: cos_sim_f1
|
668 |
+
value: 77.60567077973222
|
669 |
+
- type: cos_sim_precision
|
670 |
+
value: 75.6563071297989
|
671 |
+
- type: cos_sim_recall
|
672 |
+
value: 79.65814598090545
|
673 |
+
- type: dot_accuracy
|
674 |
+
value: 86.85333954282609
|
675 |
+
- type: dot_ap
|
676 |
+
value: 80.79899186896125
|
677 |
+
- type: dot_f1
|
678 |
+
value: 74.15220098146928
|
679 |
+
- type: dot_precision
|
680 |
+
value: 70.70819946919961
|
681 |
+
- type: dot_recall
|
682 |
+
value: 77.94887588543271
|
683 |
+
- type: euclidean_accuracy
|
684 |
+
value: 88.77634183257655
|
685 |
+
- type: euclidean_ap
|
686 |
+
value: 85.67411484805298
|
687 |
+
- type: euclidean_f1
|
688 |
+
value: 77.61566374357423
|
689 |
+
- type: euclidean_precision
|
690 |
+
value: 76.23255123255123
|
691 |
+
- type: euclidean_recall
|
692 |
+
value: 79.04989220819218
|
693 |
+
- type: manhattan_accuracy
|
694 |
+
value: 88.79962743043428
|
695 |
+
- type: manhattan_ap
|
696 |
+
value: 85.6494795781639
|
697 |
+
- type: manhattan_f1
|
698 |
+
value: 77.54222877224805
|
699 |
+
- type: manhattan_precision
|
700 |
+
value: 76.14100185528757
|
701 |
+
- type: manhattan_recall
|
702 |
+
value: 78.99599630428088
|
703 |
+
- type: max_accuracy
|
704 |
+
value: 88.84231769317343
|
705 |
+
- type: max_ap
|
706 |
+
value: 85.67411484805298
|
707 |
+
- type: max_f1
|
708 |
+
value: 77.61566374357423
|
709 |
---
|
710 |
This is the sparsified ONNX variant of the [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) embeddings model created with [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) for ONNX export/inference pipeline and Neural Magic's [Sparsify](https://github.com/neuralmagic/sparsify) for one-shot quantization (INT8) and unstructured pruning (50%).
|
711 |
|