Update README.md
Browse files
README.md
CHANGED
@@ -4,6 +4,173 @@ language:
|
|
4 |
- en
|
5 |
tags:
|
6 |
- sparse sparsity quantized onnx embeddings int8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
This is the sparsified ONNX variant of the [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) embeddings model created with [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) for ONNX export/inference pipeline and Neural Magic's [Sparsify](https://github.com/neuralmagic/sparsify) for one-shot quantization (INT8) and unstructured pruning (50%).
|
9 |
|
|
|
4 |
- en
|
5 |
tags:
|
6 |
- sparse sparsity quantized onnx embeddings int8
|
7 |
+
model-index:
|
8 |
+
- name: bge-base-en-v1.5-sparse
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: Classification
|
12 |
+
dataset:
|
13 |
+
type: mteb/amazon_counterfactual
|
14 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
15 |
+
config: en
|
16 |
+
split: test
|
17 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
18 |
+
metrics:
|
19 |
+
- type: accuracy
|
20 |
+
value: 75.38805970149254
|
21 |
+
- type: ap
|
22 |
+
value: 38.80643435437097
|
23 |
+
- type: f1
|
24 |
+
value: 69.52906891019036
|
25 |
+
- task:
|
26 |
+
type: Classification
|
27 |
+
dataset:
|
28 |
+
type: mteb/amazon_polarity
|
29 |
+
name: MTEB AmazonPolarityClassification
|
30 |
+
config: default
|
31 |
+
split: test
|
32 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
33 |
+
metrics:
|
34 |
+
- type: accuracy
|
35 |
+
value: 90.72759999999998
|
36 |
+
- type: ap
|
37 |
+
value: 87.07910150764239
|
38 |
+
- type: f1
|
39 |
+
value: 90.71025910882096
|
40 |
+
- task:
|
41 |
+
type: Classification
|
42 |
+
dataset:
|
43 |
+
type: mteb/amazon_reviews_multi
|
44 |
+
name: MTEB AmazonReviewsClassification (en)
|
45 |
+
config: en
|
46 |
+
split: test
|
47 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
48 |
+
metrics:
|
49 |
+
- type: accuracy
|
50 |
+
value: 45.494
|
51 |
+
- type: f1
|
52 |
+
value: 44.917953161904805
|
53 |
+
- task:
|
54 |
+
type: Classification
|
55 |
+
dataset:
|
56 |
+
type: mteb/banking77
|
57 |
+
name: MTEB Banking77Classification
|
58 |
+
config: default
|
59 |
+
split: test
|
60 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
61 |
+
metrics:
|
62 |
+
- type: accuracy
|
63 |
+
value: 84.29545454545455
|
64 |
+
- type: f1
|
65 |
+
value: 84.26780483160312
|
66 |
+
- task:
|
67 |
+
type: Classification
|
68 |
+
dataset:
|
69 |
+
type: mteb/emotion
|
70 |
+
name: MTEB EmotionClassification
|
71 |
+
config: default
|
72 |
+
split: test
|
73 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
74 |
+
metrics:
|
75 |
+
- type: accuracy
|
76 |
+
value: 46.705
|
77 |
+
- type: f1
|
78 |
+
value: 41.82618717355017
|
79 |
+
- task:
|
80 |
+
type: Classification
|
81 |
+
dataset:
|
82 |
+
type: mteb/imdb
|
83 |
+
name: MTEB ImdbClassification
|
84 |
+
config: default
|
85 |
+
split: test
|
86 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
87 |
+
metrics:
|
88 |
+
- type: accuracy
|
89 |
+
value: 83.14760000000001
|
90 |
+
- type: ap
|
91 |
+
value: 77.40813245635195
|
92 |
+
- type: f1
|
93 |
+
value: 83.08648833100911
|
94 |
+
- task:
|
95 |
+
type: Classification
|
96 |
+
dataset:
|
97 |
+
type: mteb/mtop_domain
|
98 |
+
name: MTEB MTOPDomainClassification (en)
|
99 |
+
config: en
|
100 |
+
split: test
|
101 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
102 |
+
metrics:
|
103 |
+
- type: accuracy
|
104 |
+
value: 92.0519835841313
|
105 |
+
- type: f1
|
106 |
+
value: 91.73392170858916
|
107 |
+
- task:
|
108 |
+
type: Classification
|
109 |
+
dataset:
|
110 |
+
type: mteb/mtop_intent
|
111 |
+
name: MTEB MTOPIntentClassification (en)
|
112 |
+
config: en
|
113 |
+
split: test
|
114 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
115 |
+
metrics:
|
116 |
+
- type: accuracy
|
117 |
+
value: 72.48974008207935
|
118 |
+
- type: f1
|
119 |
+
value: 54.812872972777505
|
120 |
+
- task:
|
121 |
+
type: Classification
|
122 |
+
dataset:
|
123 |
+
type: mteb/amazon_massive_intent
|
124 |
+
name: MTEB MassiveIntentClassification (en)
|
125 |
+
config: en
|
126 |
+
split: test
|
127 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
128 |
+
metrics:
|
129 |
+
- type: accuracy
|
130 |
+
value: 73.17753866846
|
131 |
+
- type: f1
|
132 |
+
value: 71.51091282373878
|
133 |
+
- task:
|
134 |
+
type: Classification
|
135 |
+
dataset:
|
136 |
+
type: mteb/amazon_massive_scenario
|
137 |
+
name: MTEB MassiveScenarioClassification (en)
|
138 |
+
config: en
|
139 |
+
split: test
|
140 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
141 |
+
metrics:
|
142 |
+
- type: accuracy
|
143 |
+
value: 77.5353059852051
|
144 |
+
- type: f1
|
145 |
+
value: 77.42427561340143
|
146 |
+
- task:
|
147 |
+
type: Classification
|
148 |
+
dataset:
|
149 |
+
type: mteb/toxic_conversations_50k
|
150 |
+
name: MTEB ToxicConversationsClassification
|
151 |
+
config: default
|
152 |
+
split: test
|
153 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
154 |
+
metrics:
|
155 |
+
- type: accuracy
|
156 |
+
value: 70.917
|
157 |
+
- type: ap
|
158 |
+
value: 13.760770628090576
|
159 |
+
- type: f1
|
160 |
+
value: 54.23887489664618
|
161 |
+
- task:
|
162 |
+
type: Classification
|
163 |
+
dataset:
|
164 |
+
type: mteb/tweet_sentiment_extraction
|
165 |
+
name: MTEB TweetSentimentExtractionClassification
|
166 |
+
config: default
|
167 |
+
split: test
|
168 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
169 |
+
metrics:
|
170 |
+
- type: accuracy
|
171 |
+
value: 59.49349179400113
|
172 |
+
- type: f1
|
173 |
+
value: 59.815392064510775
|
174 |
---
|
175 |
This is the sparsified ONNX variant of the [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) embeddings model created with [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) for ONNX export/inference pipeline and Neural Magic's [Sparsify](https://github.com/neuralmagic/sparsify) for one-shot quantization (INT8) and unstructured pruning (50%).
|
176 |
|